

2 CROSSTALK The Journal of Defense Software Engineering January 2005

Policy Note to Readers
The Air Force has established a policy to revitalize the software aspects
of systems engineering.

Open Source Software: Opportunities and Challenges
Wondering if open source software is right for your project? This well-
rounded article discusses the origins of open source, its strengths and
security issues, and some ways open source can be utilized in projects.
by David Tuma

Open Source Opens Opportunities for Army’s
Simulation System
This article describes the factors that led the Army to use open source
development for its next-generation simulation system, including the key
processes and tools supporting its development.
by Douglas J. Parsons and Dr. Robert L. Wittman Jr.

Introduction to the User Interface Markup Language
To break the user interface language barrier, this author proposes a single
language capable of describing user interfaces for virtually any computing
device, and describes how it is being applied in defense applications.
by Jonathan E. Shuster

DO-178B Certified Software:A Formal Reuse Analysis
Approach
Read how certifiable software reuse can be an alternative to developing
software from scratch for next-generation systems, and how it provides
significant return on investment and time-to-market advantages.
by Hoyt Lougee

Opening Up Open Source
Without welcoming arms and attitudes, Free/Libre/Open Source
Software will not become a more viable programming alternative for
technical and non-technical users despite its increasing popularity.
by Michelle Levesque and Jason Montojo

PPolicies,olicies, NeNews,ws, andand UpdatesUpdates

Cover Design by
Kent Bingham.

3

10

19

28

29

30

31

DeparDepar tmentstments

ON THE COVER

From the Publisher

Web Sites

Coming Events

Call for Articles

Letter to Editor

2005 CrossTalk Editorial Board

BackTalk

CrossTalk
OC-ALC/ MAS

CO-SPONSOR

OO-ALC/MAS
CO-SPONSOR

WR-ALC/MAS
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Tom Christian

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 775-5555

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Oklahoma City-Air Logistics Center (OC-ALC),
Ogden-Air Logistics Center (OO-ALC), and Warner
Robins-Air Logistics Center (WR-ALC) MAS
Software Divisions are the official co-sponsors of
CROSSTALK, The Journal of Defense Software
Engineering. The MAS Software Divisions and the
Software Technology Support Center (STSC) are
working jointly to encourage the engineering develop-
ment of software to improve the reliability, sustainabil-
ity, and responsiveness of our warfighting capability.

The STSC is the publisher of CrossTalk, provid-
ing both editorial oversight and technical review of the
journal.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 28.

OO ALC/MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD . Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-7026, or e-mail <stsc. web-
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Open Open SourSourcece SoftwarSoftwaree

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

OpenOpen FForumorum

4

6

11

15

20

26

Each month Kent Bingham, our cover artist, provides us with at least three ideas as we
plan a given issue’s cover. One of Kent’s ideas for this month was a selection of

soups with the caption, “There really is a free lunch.” As I thought about this option, I
was worried how many of our readers would get this same idea regarding open source
software. When deliberating using open source software, the user needs to understand
that there are still costs that must be considered.

As with contemplating any new software product, the requirements for the software
must be compared with its benefits and costs. Match your requirements with the software capabil-
ities. If its features don’t match all your requirements, you must decide if these are truly hard
requirements or something you can live without. If they are hard requirements, are you prepared to
develop the features yourself and add them to the software? What will it cost you to develop these
required software upgrades? What will it cost to maintain your add-ons with each new upgraded
software release? If the software is a tool that your organization will use to develop software, is the
tool adequately documented so that the learning curve is reasonable? Are you willing to abide by the
licensing agreement to share your improvements with the software sustainers?

We start this month’s issue of CrossTalk with an important policy released by the U.S. Air
Force (USAF). As Michael R. Nicol explains in the abstract, the USAF believes we need to apply a
renewed focus to software development and acquisition as we continue to work more with systems.
The USAF plans to supplement the policy in future months with additional guidance, training, and
other tools to support its successful implementation.

We begin our theme articles with an overview of open source software by David Tuma. In Open
Source Software: Opportunities and Challenges, Tuma expands on the idea that while open source soft-
ware has some great advantages, the user needs to be aware of challenges when deciding whether
or not to use it.

In Open Source Opens Opportunities for Army’s Simulation System, Douglas J. Parsons and Dr. Robert
L. Wittman Jr. discuss their own twist to open source software. The OneSAF program has proven
beneficial to the defense community and has even won the U.S. Government’s Top 5 Quality
Software Projects award. In this article, we learn that the software is being made available to the
defense community and others who may have a valid need for it. However, given the military
requirements, following all the defined requirements for open source software is not feasible.

Jonathan E. Shuster discusses another open source software product in Introduction to the User
Interface Markup Language. This variation of the User Markup Language is available to the commu-
nity and might meet your requirements.

We finish Hoyt Lougee’s discussion on reuse in this issue with his follow-up article, DO-178B
Certified Software: A Formal Reuse Analysis Approach. If you read Lougee’s previous article last month,
then you will know that the techniques discussed are applicable not only to DO-178B, but also are
good overview ideas for any software reuse effort.

We conclude this issue with an Open Forum article by Michelle Levesque and Jason Montojo.
In Opening Up Open Source, Levesque and Montojo bring to the forefront some of the difficulties
encountered when trying to make full use of open source software.

As these articles show, open source software provides the opportunity for enhancing your own
software without significant cost, but it is still not a free lunch. There are costs associated with
deciding if the software meets your needs and enhancing it to implement missing features. It is also
possible that a lack of documentation and training will hinder using the software effectively. As with
any tool, open source software can make software development a less strenuous and expensive task
if it is used with the proper expectations and oversight.

As we begin this new year, I would also like to thank CrossTalk’s Editorial Board (CEB),
most of whom donate their time to help make CrossTalk the best it can be. These reviewers
strive to provide the authors with useful comments that will strengthen the articles and make them
useful for our readers. A list of CEB members can be found on page 30.

Using Free Software Doesn’t Mean
It Won’t Cost Anything

Elizabeth Starrett
Associate Publisher

January 2005 www.stsc.hill.af.mil 3

From the Publisher

4 CROSSTALK The Journal of Defense Software Engineering January 2005

Policies, News, and Updates

MEMORANDUM FOR SEE DISTRIBUTION 04A-003

SUBJECT: Revitalizing the Software Aspects of Systems Engineering
REFERENCE: Air Force Software-Intensive Systems Strategic Improvement Program
(AFSSIP) memo dated 13 Jan. 2004.

In multiple programs across our acquisition communities, we have recognized systems
engineering challenges over the past few years, and have taken steps to improve the
implementation and effectiveness of our systems engineering processes.

This policy memorandum is intended to improve the efficiency and effectiveness of our
acquisition processes and software management. These processes are applied as an integral part
of our systems engineering and capability acquisition processes. To support our overall agile
acquisition objectives, we expect you to address, as a minimum, the following software focus
areas throughout the life cycle of your acquisition programs beginning with pre-Milestone/Key
Decision Point A activities:

1. High Confidence Estimates: Estimate the software development and integration
effort (staff hours), cost, and schedule at high (80-90%) confidence.

2. Realistic Program Baselines: Ensure cost, schedule, and performance baselines are
realistic and compatible. Ensure the baselines support the disciplined application of
mature systems/software engineering processes, and ensure software-related
expectations are managed in accordance with the overall program’s expectation
management agreement. The program budget must support the high confidence
estimates for effort (staff hours), cost, and schedule.

3. Risk Management: Continuously identify and manage risks specific to computer
systems and software as an integral part of the program risk management process.
Ensure the risks, impact, and mitigation plans are appropriately addressed during
program and portfolio reviews.

Policy Note to Readers

Section 804 of the fiscal year 2003 National Defense Authorization Act (Public Law 107-314) requires each military
department to improve its software acquisition processes. The Air Force approach integrates Section 804 and ongoing sys-
tems engineering improvement activities to support our agile acquisition objectives of decreasing acquisition cycle time and
improving our credibility in acquisition program execution. As a first step, we recently established policy to revitalize the soft-
ware aspects of systems engineering. The policy identifies focus areas that we consider fundamental to developing realistic pro-
gram baselines and promoting discipline in the acquisition and development of software-intensive systems. We plan to sup-
plement the policy in the next few months with additional guidance, training, and other tools to support successful imple-
mentation of our acquisition improvement objectives.

Michael R. Nicol
Technical Advisor, Embedded Computer Systems Software Aeronautical Systems Center

U.S. Air Force

January 2005 www.stsc.hill.af.mil 5

4. Capable Developer: Identify the software-related strengths, weaknesses, and risks;
domain experience; process capability; development capacity; and past performance
for all developer team members with significant software development
responsibilities. Consider this information when establishing program baselines and
awarding contracts, and throughout the program execution.

5. Developer Processes: Ensure the entire developer team establishes, effectively
manages, and commits to consistent application of effective software development
processes across the program.

6. Program Office Processes: Ensure the program office establishes and employs
effective acquisition processes for software, is adequately staffed, and consistently
supports the developer team in the disciplined application of established development
processes.

7. Earned Value Management Applied to Software: Continuously collect and
analyze earned value management data at the software level to provide objective
measures of software cost and schedule. The Earned Value Management System
should support and be consistent with the software effort and schedule metrics.

8. Metrics: Employ a core set of basic software metrics to manage the software
development for all developer team members with significant software
development/integration responsibilities. Guidance for the core metrics is provided in
the enclosure. Programs are encouraged to implement additional metrics based on
program needs.

9. Life Cycle Support: Address sustainment capability and capacity needs during the
system design and development phase, and balance overall system acquisition and
sustainment costs. Ensure you plan, develop, and maintain responsive life cycle
software support capabilities and viable support options.

10. Lessons Learned: Support the transfer of lessons learned to future programs by
providing feedback to center level Acquisition Center of Excellence (ACE) and other
affected organizations. Lessons learned information includes original estimates and
delivered actuals for software size, effort, and schedule; program risks and mitigation
approaches; and objective descriptions of factors such as added functional
requirements, schedule perturbations, or other program events that contributed to
successes and challenges.

These focus areas will be incorporated as appropriate in your Systems Engineering Plan,
Integrated Program Summary, or acquisition plans. We also expect you to address these focus
areas as applicable during Acquisition Strategy Panels and PEO portfolio reviews. PEOs may
tailor the implementation of these focus areas as required and the appropriate Acquisition
Executive will be notified of all tailoring.

Sample language and additional guidance will be available in November 2004 in an Air
Force Software Guidebook. Our POCs are Mr. Ernesto Gonzalez, SAF/AQRE, 703-588-7846,
Ernesto.Gonzalez@pentagon.af.mil, and Maj Mark Davis, SAF/USAL, 703-588-7385,
Mark.Davis2@pentagon.af.mil.

MARVIN R. SAMBUR PETER B. TEETS
Assistant Secretary of the Air Force Undersecretary of the Air Force
(Acquisition)

Policy Note to Readers

6 CROSSTALK The Journal of Defense Software Engineering January 2005

Open Source Software

Open Source Software: Opportunities and Challenges

Much more than a buzzword, open source software is becoming an increasingly important part of the information technolo-
gy environment. Many program managers, project managers, and developers in the Department of Defense and elsewhere are
already familiar with open source; others may wonder how best to use open source in a project environment. In considering the
opportunities presented by open source software, it is helpful to understand its origins as well as the challenges you may face
in implementing it.

David Tuma
Software Process Dashboard Initiative

Whether you realize it or not, you rely
on open source software every day.

Open source software provides the under-
pinnings for the Internet, directs much of
the world’s e-mail traffic, and powers
more than two-thirds of the world’s Web
sites [1].

The open source paradigm is based on
the idea that software reuse need not stop
at organizational boundaries. By sharing
source code freely under a license that
generously permits copying, modification,
and redistribution, open source projects
allow collaborative software development
that benefits a larger community.

Although open source software has
been in existence for decades, the arrival
of the Internet has led to a veritable
explosion in open source activity. The
Internet has made it possible for develop-
ers around the world to discover each
other, collaborate in real time, and share
the works they create with others.

Organizations, businesses, and govern-
ments around the world are opening up to
the possibilities provided by open source
software. Although open source software
has been in use for some time in the
Department of Defense (DoD), a policy
released in May of 2003 [2] officially put
open source software on a level playing
field with proprietary software.

If you have not explored open source
software firsthand, you might be surprised
by its diversity. Although media coverage
commonly focuses on the Linux operating
system and on server-based applications
like Apache and MySQL, these applica-
tions are only the tip of the iceberg.
System administration tools like Snort (an
intrusion-detection tool), Nessus (a vul-
nerability scanner), and NetCat (a network
debugging and mapping tool) help to
manage computer networks. A wide vari-
ety of tools ranging from the Gnu’s Not
Unix (GNU) C Compiler to Perl (a popu-
lar programming language) to Eclipse (a
Java integrated data environment devel-
oped by IBM) target software develop-

ment. An extensive array of reusable
libraries and frameworks can save your
software project time and money.
Applications like Mozilla (a Web browser)
and OpenOffice (an office productivity
suite) address common end-user needs.
And of course, the list goes on – one pop-
ular open source Web site alone lists more
than 11,000 stable/mature open source
projects [3].

Strengths of Open Source
Many organizations are initially attracted
to open source products because they can
generally be acquired for free.
Momentarily deferring the debate about
total cost of ownership until later in this
article, removal of the initial procurement
barrier can at times be a significant
enabling factor for software use. For
example, budget constraints have encour-
aged academia to adopt and support open
source software for decades. With the
increased public awareness of open
source, public and private middle and sec-
ondary schools are beginning to investi-
gate open source options, as well [4]. And
small businesses may find open source
software helpful in leveling the playing field.

Government organizations and con-
tractors often discover different reasons
to appreciate zero-cost licenses for open
source software. For example, in 1999 the
Census Bureau needed to create a Web site
but had no official information technolo-
gy budget to make it happen; staffers were
able to build the Web site using open
source applications and existing hardware,
and the Web site is still in use today [5]. In
addition, open source approaches can
lower the monetary risk of experimenting
with new technologies, effectively speed-
ing the pace of technology adoption and
supporting the collaborative development
of new standards [1]. Moreover, the sim-
plified licensing model of open source
software can facilitate inter-agency sharing
and reuse of developed solutions [6].

In fact, reuse is a central tenet of the

open source development paradigm.
Open source software licenses (as defined
by the Open Source Foundation [7])
explicitly target software reuse by permit-
ting source code to be copied, modified,
and distributed. When organizations and
individuals share a common need, they
can share and reuse entire open source
products rather than independently devel-
oping redundant code. Common exam-
ples of this style of reuse include not only
off-the-shelf open source products like
the Apache Web server, but also applica-
tion frameworks like Struts, and reusable
libraries for performing tasks such as pars-
ing eXtensible Markup Language or con-
suming Web services. Communities orga-
nized around this type of open-source
reuse foster rapid innovation and
progress, as many contributors can simul-
taneously develop improvements that
benefit all users of the product.

The true strength of open source
reusability, however, emerges when an
organization or an individual has a unique
need. An organization or individual with a
new or unmet need is free to modify an
open source product1 to meet that need,
potentially reusing thousands of lines of
code. The benefits of reuse in such a sce-
nario are well understood, saving count-
less hours of development, testing, and
maintenance. Contributing such an
enhancement back to the open source
community can benefit other organiza-
tions with similar needs [8].

Open source software promotes reuse
in another, unexpected way through code
transparency. Inadequate documentation
has long been identified as a significant
barrier to software reuse; in addition, sub-
tle misunderstandings between developers
on either side of a code boundary can lead
to insidious errors. In the absence of flaw-
less code and impeccable documentation,
the freedom to examine source code can
mean the difference between a useful,
reusable library and a baffling black box.

When code in an open source library

Open Source Software: Opportunities and Challenges

January 2005 www.stsc.hill.af.mil 7

behaves unexpectedly, a developer can
peer into it to understand its operation
and true intent, and determine whether
the defect lies in the library or in their
mental model of it. If the defect is in the
library, the developer can either notify the
original author or fix it himself or herself.
Otherwise, the developer can gain a better
understanding of the library and correct
his or her code to use it properly. In either
case, transparency across the code bound-
ary helps to improve the quality of the
overall system.

In the broader pursuit of software
quality, many open source projects suc-
ceed by leveraging code review practices
on a massive scale. Studies have demon-
strated that code reviews (analyzing source
code for problems) can remove defects
much more effectively than testing (run-
ning an application and watching for
incorrect behavior). In a closed source
environment, only internal developers can
perform code reviews, while the larger
user community is constrained to black-box
testing. Open source projects remove this
limitation, freeing any end user to partici-
pate in the code review process.

While there is a practical limit to the
number of software developers that can
work together on a single team (because
communication needs increase exponen-
tially with the number of developers),
there is almost no limit to the number of
people who can simultaneously review
code and test an application [9].
Accordingly, successful open source pro-
jects like Linux harness the skills of their
large user base to perform massively par-
allel code reviews. Even brute-force test-
ing methods can prove effective in
improving product quality when thou-
sands of individuals participate, each test-
ing a product from his or her own unique
perspective. When the conditions are
right, open source projects can successful-
ly employ these techniques to develop
very high-quality products [10].

Security of Open Source
Software
Open source proponents cite the collabo-
rative review process as a major strength
of the open source paradigm, ideally suit-
ed for producing highly reliable, secure
code. Nevertheless, the security of open
source software (and its comparison to the
security of proprietary software) is a hotly
debated topic.

For example, open source critics have
recently questioned the use of Linux for
defense systems. In a recent press release,
Green Hills Software, Inc.’s Chief

Executive Officer Dan O’Dowd stated,
“The open source process violates every
principle of security. It welcomes every-
one to contribute to Linux. Now that for-
eign intelligence agencies and terrorists
know that Linux is going to control our
most advanced defense systems, they can
use fake identities to contribute subver-
sive software that will soon be incorpo-
rated into our most advanced defense sys-
tems” [11].

Other experts quickly responded to
O’Dowd’s claims, labeling them fear, uncer-
tainty, and doubt. Citing Easter eggs, back-
doors, spyware, and malware, they pointed
out that proprietary software could just as
easily contain illegitimate code. Citing the
rigorous public review process used to
approve Linux code, they argued that a for-
eign intelligence agency could more easily infil-
trate a commercial development project

than slip malevolent code under the noses
of hundreds or thousands of watching
reviewers. If one is truly worried about
such malicious code, they argued, open
source development is a better approach
than closed source development since it
permits anyone to perform his or her own
independent review [12, 13].

Experts on both sides of the open
source security debate contribute many
compelling arguments. The bottom line,
however, is that open source software is
not automatically more or less secure than
proprietary software [14]. Both develop-
ment approaches have their strengths and
weaknesses, but neither automatically pro-
duces more secure code than the other.
Unfortunately, impassioned people on
both sides of the debate regularly make
broad, unconditional assertions about the
relative security of open source and pro-
prietary software. Although such state-
ments certainly keep the debate interesting
(and make for colorful news items), objec-
tive analyses are more useful. An astute

observer should be skeptical of sweeping
generalities and dig deeper to find impar-
tial expert analysis.

Using Open Source Software
Many people may have preconceived ideas
about potential uses of open source soft-
ware. With the variety of products avail-
able, however, there are many ways pro-
jects might consider using open source
(including but not limited to the follow-
ing):
• Deploy onto off-the-shelf open source

server software (such as Linux,
Apache, or MySQL).

• Reuse open source architectural frame-
works (such as Struts, Spring, or
Zope).

• Make use of open source development
tools (such as Ant, Eclipse, or CVS
[Concurrent Versions System]).

• Leverage reusable libraries (such as
Xalan, OpenSSL, or GTK+).
Like the DoD, many organizations

currently have policies that permit using
open source software when it meets
applicable requirements and provides the
best value for the money. Thus, project
managers considering using open source
software must be prepared to analyze all
the options available – both proprietary
and open source – and determine which
product provides the best value within the
requirements for the project at hand.
Project managers can immediately
encounter several challenges relating to
open source products.

For example, project managers may
have difficulty discovering what open
source products are available. Unlike pro-
prietary alternatives, open source products
rarely have budgets for advertising and
marketing. And while mainstream media
often includes news items on flagship open
source products like Linux and Apache,
you are unlikely to find information on
frameworks, libraries, tools, or less com-
mon applications.

Fortunately, many Internet resources
are available. Two of the largest Web sites
are <freshmeat.net> [15] and <source
forge.net> [3]; both list tens of thousands
of open source software items in a cate-
gorized and searchable format. Keep in
mind that open source (like technology in
general) can progress at a remarkable rate,
and new open source products and frame-
works can seemingly appear overnight.
Similarly, an open source project that
might have had too many rough edges six
months ago may now exceed your needs
today. To keep abreast of these changes,
software developers may find
<slashdot.org> [16] to be a useful source

“An organization or
individual with a new
or unmet need is free

to modify an open
source product to meet
that need, potentially
reusing thousands of

lines of code.”

Open Source Software

8 CROSSTALK The Journal of Defense Software Engineering January 2005

of product announcements.
With a list of potential open source

and proprietary options ready, the daunt-
ing challenge of determining best value
begins (see Table 1). This project manage-
ment task has never been simple, but
open source introduces many additional
challenges.

For example, when considering only
proprietary options, managers might glean
information from the market price of a
product. It might be a safe working
assumption that a $50,000 product has
more features than a $500 product.
Where, then, does an open source prod-
uct fit in the list? In a similar vein, man-
agers can often look at market share statis-
tics for proprietary products to see which
ones are most popular. Unfortunately, this
is often impossible for all but a handful of
open source products. Although the
Hyper Text Transfer Protocol makes it
possible to estimate the number of
Apache Web servers in use around the
world, there is almost no way to deter-
mine how many people are using Linux,
OpenOffice, or many of the tens of thou-
sands of other open source applications
in existence. These challenges make it
more difficult to build a short list of prod-
ucts to choose from.

As a result, finding the best value comes
down to a lot of research, legwork, and
analysis. Find people within your organi-
zation and elsewhere who are using the
products, and draw upon their experiences
for pragmatic advice. Look for reviews in
online publications. And above all, be
wary of sweeping claims that open source
software is better/worse than proprietary software
in category XYZ. Although it is tempting to
listen to such claims (because they would
certainly simplify your decision-making

process), they rarely withstand careful
scrutiny. In truth, comparisons must be
made on a case-by-case basis, taking into
consideration not only the products in
question but also the unique requirements
of your project. Here are some items to
include on your comparison checklist (see
[17] for a more thorough checklist):
• Requirements. This is, of course, one

of the most important characteristics
to consider: Does the software provide
the functionality your project needs? If
an open source product is missing a
small function you need, is it possible
and cost effective to add the feature
yourself (keeping life-cycle costs in
mind)? Does it meet your project’s
requirements for performance, quality,
reliability, scalability, and security?

• Licensing Restrictions. Open source
software is distributed under various
licenses with differing terms. If some
of these are incompatible with your
project’s target environment (see dis-
cussion below), they should be elimi-
nated early in the selection process.

• Support. What quality of support is
available for the various options on
your list, and how much does that sup-
port cost? Support for open source
products may be available from the
original developers or from third par-
ties. If third-party support is not avail-
able, you can gauge the level of support
from the open source community by
scanning related help forums, bug
trackers, and mailing list archives.
Throughout the past months, have user
cries for help gone unanswered, or have
they been addressed quickly? Larger
open source projects – especially the
flagship open source products like Linux
and Apache – often have excellent sup-
port [18, 19, 20]. Support for smaller
projects may be lacking – especially if
the project is no longer under active
development. In such cases, you will
need to estimate how much it would
cost to support the application yourself.

• Documentation. Is the product ade-
quately documented? Does the docu-
mentation appear up-to-date? Are third-
party books on the product available?

• Maintenance Costs. Will the de-
ployed product be easy to maintain?
For example, will it require monitoring
and patching, and are tools available to
help with those tasks?

• Skills. Do members of your team have
expertise with the products in question?
If not, is training available (either online
or from a third party)? If you plan to
outsource or subcontract project work
or maintenance, are experienced con-

tractors/integrators available?
• Warranties. Open source software

typically comes with no warranties,
although third-party warranties may be
available. How do these compare with
the warranties for the proprietary soft-
ware choices on your list?

• Vendor Lock-In. Is the product stan-
dards-based, or does it lock you into a
particular proprietary solution? Al-
though most open source products are
vendor-neutral, not all are. If technolo-
gy neutrality is important to your pro-
ject, examine your options carefully.
Ultimately, many of these considera-

tions roll up into the larger concept of
total cost of ownership (TCO). TCO has
received a lot of media attention lately,
and will continue to be a source of debate;
like all of the characteristics above, how-
ever, TCO must be evaluated on a case-
by-case basis. Some projects will see a
lower TCO from proprietary solutions,
while some will see a lower TCO from
open source products. And with certainty,
the types of projects that benefit from
each will change over time, as both pro-
prietary and open source products move
forward.

If your research and analysis lead you
to select an open source product for your
project, it is, of course, imperative that
you understand and respect the license
terms of that open source software2.
Because open source software is generally
available at no cost, people often mistak-
enly assume that the code is in the public
domain and can be used without restric-
tions. On the contrary, open source soft-
ware is generally distributed under one of
the licenses approved by the Open Source
Initiative [7].

By definition, open source licenses
universally grant broad permission to
copy, modify, and distribute source code
and compiled binaries, as long as the
terms of the license agreement are
respected. In many cases, these terms are
very simple to comply with; for example,
they may require a specific copyright
notice and disclaimer to be included in the
end-user documentation of a product that
redistributes an open source library. Of
course, the terms vary from license to
license, and dozens of open source licens-
es are in active use today, so it is important
to carefully read, understand, and comply
with the licenses of any open source prod-
ucts you use. Fortunately, this task is not as
difficult as it sounds, since a small number
of licenses (listed in Table 2) cover as
much as 90 percent of the open source
software currently available.

If you modify an open source product

Table 1: Checklist for Comparing Software
Options

Checklist for Comparing Software Options

Cost-Related Factors

o Software Costs

(purchase, upgrades, licensing)

o Hardware Costs (purchase, upgrades)

o Staffing Costs (internal and contract staff)

o Internal and External Support Costs

(installation, maintenance, troubleshooting)

o Indirect Costs (downtime, training)

Qualitative Factors

o Customizability/Flexibility

o Availability/Reliability

o Interoperability

o Scalability

o Performance

o Security

o Manageability/Supportability

o Expected Lifetime

Source: "A Business Case Study of Open Source Software" [17]

Commonly Used Open Source Licenses

• GNU General Public License
• GNU Lesser General Public License
• Berkeley Software Distribution License
• Artistic License
• Apache Software License
• Massachusetts Institute of Technology License
• Mozilla Public License

Open Source Software: Opportunities and Challenges

January 2005 www.stsc.hill.af.mil 9

or compile it into a larger program, addi-
tional licensing terms may apply. For
example, some licenses will require your
modifications to be released back to the
open source community. Ensure that you
read the license carefully and understand
its requirements. In particular, most orga-
nizations will want to avoid compiling and
linking code distributed under Gnu’s Not
Unix (GNU) General Public License into
a larger project [21].

When using, modifying, or enhancing
open source software, it is also important
to understand any applicable restrictions
that stem from organizational policy, con-
tractual requirements, and the like. For
example, if your organization forbids any
external release of code, and a particular
open source product requires distributed
code modifications to be released as open
source, then you may not be able to mod-
ify that library and still meet all your legal
obligations2. From a project management
standpoint, it is best to be aware of such
constraints before heading down a dead-
end path.

Participating in the Open
Source Community
As awareness of open source software
grows, and as open source usage becomes
a more common part of everyday soft-
ware development, more and more indi-
viduals and organizations wonder how
they can get involved with the open source
community.

Some organizations have successfully
embraced the open source development
model for their managed projects, accept-
ing code contributions from external
developers. However, since external devel-
opers may not be accountable to the inter-
nal project goals, this approach introduces
risks that most projects are not able to
accept. Fortunately, there are still many
other creative ways to work with the open
source community.

Perhaps the simplest way to participate
in the open source community is to pro-
vide feedback and bug fixes to open
source projects. If your project uses an
open source product (whether it be an
operating system, an application, a frame-
work, a reusable library, or some other
product), take the time to thank the devel-
opers who created it. In many cases, this
thanks is the only payment they receive for
their efforts. If you discover and/or fix a
bug in the product, you can benefit the
entire community by sharing your discov-
ery or patch with the product developers.

Another way to participate in the open
source community is to contribute

enhancements to an open source product.
If you discover that a particular open
source product meets most (but not all) of
your needs, and decide (through due dili-
gence) that the best course of action for
your project is to extend and enhance the
open source product, consider contribut-
ing these enhancements back to the com-
munity when your project is done. Many
commercial and government projects par-
ticipate in open source in this way.

Some organizations have gone even
further, contributing completed projects
in their entirety to the open source com-
munity. In addition to the obvious benefits
of reuse, organizations have discovered
other unexpected benefits as well – for
example, reduced life-cycle costs as open
source developers begin fixing bugs and
adding features [22]. Both government
and corporate supporters of open source
are increasingly using this approach.

Summary
Open source will continue to be an impor-
tant part of the software landscape for
years to come. Although misconceptions
and misinformation often confuse the
decision-making process, careful analysis
can indicate where using open source is
appropriate. Understanding the issues and
opportunities inherent in open source is
the first step in using it effectively to deliv-
er maximum value for your project, your
organization, and your clients.u

References
1. Fordahl, Matthew. “Open-Source

Software a Big Tech Player.” AP
Online 16 July 2004 <www.biz
report.com/news/7684>.

2. Stenbit, John P. “Open Source
Software (OSS) in the Department of
Defense (DoD).” Washington, D.C.:
Defense Information Systems Agency,
28 May 2003 <http://iase.disa.mil/
oss-in-dodmemo.pdf>.

3. Open Source Technology Group.
SourceForge.net 12 Sept. 2004
<http://sourceforge.net>.

4. Surran, Michael. “Making the Switch
to Open Source Software.” T.H.E.
Journal 31.2 (Sept. 2003): 36+ <www.
thejournal.com/magazine/vault/
a4499.cfm>.

5. Zieger, Anne. “Open-Minded: Gov-
ernment Agencies Are Overcoming
Obstacles to Open Source.” Govern-
ment Enterprise 2 June 2002 <www.
governmententerprise.com/show
Article.jhtml?articleID=17501499>.

6. Gallagher, Peter. Public InfoStructure –
Inevitable Evolution: Unlocking
Innovation for the Business of

Government. Proc. of the Third
Annual Open Source in Government
Conference, George Washington
University, Washington, D.C., 16 Mar.
2004 <www.egovos.org/Conferences/
March_2004_Presentations>.

7. Perens, Bruce. The Open Source
Initiative. Vers. 1.9. Open Source, 19
Oct. 2001 <www.opensource.org>.

8. Pavlicek, Russell. “Open Source
Perspective: Open Source Origins.”
Processor 25.34 (22 Aug. 2003): 6
<www.processor.com/Editorial/
article.asp?article=articles/p2534/06
p34/06p34.asp>.

9. Raymond, Eric S. “The Cathedral and
the Bazaar.” Free-Soft.Org, 22 Nov.
1998 <www.free-soft.org/literature/
p a p e r s / e s r / c a t h e d r a l - b a z a a r /
cathedral-bazaar.html>.

10. United Nations. E-Commerce and
Development Report 2003. United
Nations Conference on Trade and
Development, New York and Geneva,
2003: Chap: 4 “Free and Open Source
Software: Implications for ICT Policy
and Development.” <www.unctad.
org/en/docs/ecdr2003ch4_en.pdf>.

11. Green Hills Software. “Using Linux
Software in Defense Systems Violates
Every Principle of Security Says Green
Hills Software’s CEO and Founder.”
Santa Barbara, CA: Green Hills Soft-
ware, 8 Apr. 2004 <www.ghs.com/
news/20040408_AFEI.html>.

12. Groklaw. “CEO’s of LynuxWorks and
FSMLabs Reply to Green Hills’ FUD.”
Groklaw. Ed. Pamela Jones. 11 Apr.
2004 <www.groklaw.net/article.php?
story=20040411073918151>.

13. Singh, Inder. “LynuxWorks CEO, Dr.
Inder Singh, Challenges Misrepresen-
tative Claims Regarding Security in the
Military.” San Jose, CA: LynuxWorks,
2004 <www.lynuxworks.com/corporate
/press/2004/linux-secure-military.
php>.

14. Wheeler, David A. Open Source
Software (OSS) and Security. Proc. of
the Third Annual Open Source in
Government Conference. George
Washington University, Washington,
D.C., 15-17 Mar. 2004 <www.egovos.
org/Conferences/March_2004_

Cost-Related Factors

o Software Costs

(purchase, upgrades, licensing)

o Hardware Costs (purchase, upgrades)

o Staffing Costs (internal and contract staff)

o Internal and External Support Costs

(installation, maintenance, troubleshooting)

o Indirect Costs (downtime, training)

Qualitative Factors

o Customizability/Flexibility

o Availability/Reliability

o Interoperability

o Scalability

o Performance

o Security

o Manageability/Supportability

o Expected Lifetime

Source: "A Business Case Study of Open Source Software" [17]

Commonly Used Open Source Licenses

• GNU General Public License
• GNU Lesser General Public License
• Berkeley Software Distribution License
• Artistic License
• Apache Software License
• Massachusetts Institute of Technology License
• Mozilla Public License

Table 2: Commonly Used Open Source Licenses

10 CROSSTALK The Journal of Defense Software Engineering January 2005

Open Source Software

Presentations>.
15. Open Source Technology Group.

Freshmeat.net 12 Sept. 2004 <http://
freshmeat.net/about>.

16. Open Source Technology Group.
Slashdot.org. Eds. Rob Malda, Jeff
Bates, et al. 12 Sept. 2004 <http://
slashdot.org/about.shtml>.

17. Kenwood, Carolyn A. “A Business
Case Study of Open Source Software.”
Bedford, MA: The MITRE Corpo-
ration, July 2001 <www.mitre.org/
work/tech_papers/tech_papers_01/
kenwood_software/index.html>.

18. King, Julia. “A Sunny Forecast For
Open Source.” Computerworld 26
Apr. 2004 <www.computerworld.
com/industrytopics/travel/story/0,10
801,92583,00.html>.

19. Rapoza, Jim. “Can Open Source
Provide Adequate Support?” eWeek
19 Apr. 2004 <www.eweek.com/
article2/0,1759,1569380,00.asp>.

20. Dickerson, Chad. “CTO Connection:
Open Source for a Song.” InfoWorld
15 Aug. 2003 <www.info world.com/
article/03/08/15/32OPconnection_

1.html>.
21. Wacha, Jason B. “Open Source, Free

Software, and the General Public
License.” Computer and Internet Law
20.3 (1 Mar. 2003): 20+.

22. Boos, Paul M. Using and Contributing
to the Open Source Community While
Supporting the Government. Proc. of
the Third Annual Open Source in
Government Conference. George
Washington University, Washington,
D.C., 15-17 Mar. 2004 <www.egovos.
org/Conferences/March_2004_
Presentations>.

Notes
1. In fact, the open source movement

traces its origins (through the free soft-
ware movement) to Richard Stallman’s
desire to enhance a proprietary printer
driver [8].

2. The author of this article is not a
lawyer. The information provided in
this article is for informational purpos-
es only and should not be construed as
legal advice.

About the Author

David Tuma is the lead
developer for the Soft-
ware Process Dashboard
Initiative, creating open
source tools to support
high-maturity software

development processes. He first encoun-
tered open source software as a student at
the Massachusetts Institute of Technolo-
gy, and again later as a captain in the
United States Air Force. As a strong sup-
porter of open source, Tuma has been
developing open source software on his
own time for the past 10 years.

Software Process Dashboard
Initiative
1645 E. HWY 193, STE 102
Layton, UT 84040-8525
Phone: (801) 771-4100
Fax: (801) 728-0595
E-mail:tuma@users.sourceforge.net

Open Source
www.opensource.org
The Open Source Initiative (OSI) is a non-profit corporation
dedicated to managing and promoting the open source defini-
tion for the good of the community, specifically through the
OSI Certified Open Source Software certification mark and
program. You can read about successful software products and
about OSI’s certification mark and program on the Web site.

SourceForge.net
http://sourceforge.net
SourceForge.net is an open source software development Web
site maintaining one of the largest repositories of open source
code and applications available on the Internet. SourceForge.net
provides free services to open source developers.

GNU Operating System – Free Software
Foundation
www.gnu.org
The GNU [GNU’s Not Unix] Project was launched in 1984 to
develop a complete free software, Unix style operating system:
GNU (pronounced guh-noo). The Free Software Foundation is
the principal organizational sponsor of the GNU project.

National Technology Alliance
www.nta.org
The National Technology Alliance (NTA) is a U.S. government
program established in 1987 to influence commercial and dual-
use technology development with an emphasis on meeting
national security and defense technology needs. The NTA’s goal
is to partner commercial technology solutions to government
user technology needs and then create new or enhanced com-

mercial products where the cost of development is leveraged
across a broad user community.

Open Source Software Institute
http://oss-institute.org
The Open Source Software Institute is a non-profit organiza-
tion comprised of corporate, government, and academic repre-
sentatives whose mission is to promote the development and
implementation of open source software solutions within U.S.
federal and state government agencies and academic entities.

Samba
http://us4.samba.org
Samba is an open source/free software suite that provides seam-
less file and print services allowing for interoperability between
Linux/Unix servers and Windows-based servers. Samba is freely
available under the GNU General Public License. Samba is soft-
ware that can be run on a platform other than Microsoft
Windows such as Unix, Linux, IBM System 390, OpenVMS,
etc.

freshmeat
http://freshmeat.net
freshmeat maintains one of the Web’s largest index of Unix and
cross-platform software, themes and related eye-candy, and
Palm OS software. Thousands of applications and links to new
applications are added daily. Each entry provides a description
of the software, links to download it and obtain more informa-
tion, and a history of the project’s releases so readers can keep
up-to-date on the latest developments.

WEB SITES

January 2005 www.stsc.hill.af.mil 11

Since its beginnings in 1991 with a small
group of programmers – some consid-

ered fanatics – Linux has become a force of
hundreds of thousands [1]. The value of
open source computing is found in the abil-
ity to leverage the talents and resources of
an entire community. The Program Execu-
tive Office for Simulation, Training, and
Instrumentation (PEO STRI) is positioning
its next-generation constructive simulation
to provide this same benefit to the Army’s
modeling and simulation (M&S) community.

The One Semi-Automated Forces
(OneSAF) Objective System (OOS) is being
developed to primarily serve training audi-
ences, research scientists, and acquisition
analysts. The OOS will also provide embed-
ded simulation capabilities as part of the
Army’s Future Combat Systems. Once field-
ed in fiscal year 2006, the OOS will not only
be used by the Army, but also will serve
multi-service, international, industry, and
academic organizations. Releasing source
code to such a vast network of developers
will certainly reap benefits for the
Department of Defense (DoD) M&S com-
munity as a whole; however, distributing
source code alone will not provide the opti-
mal mechanism for a community to work
together.

Initial efforts focused on developing a
capable, robust, and extensible architecture
supporting a toolkit that will allow users to
grow the baseline. Active program office
support, tools, and processes are also neces-
sary to foster communication and increase
the likelihood that community-developed
capabilities will be integrated and shared
with other users and developers. Finally,
growing OOS product line capabilities will
not be limited only to skillful Java program-
mers: A software toolset will allow a user
who is not a programmer to build military
entities, units, and their respective activities.

OneSAF Background
The OOS is the U.S. Army’s next-generation
simulation system that can represent a full

range of military operations, systems, and
control processes. It will accurately and
effectively represent specific activities of
combat; command, control, communica-
tions, computers, and intelligence; combat
support; and combat service support. It is an
entity-level simulation, meaning that it can
simulate the activities of individual combat-
ants or vehicles (as opposed to aggregate-
level simulations, which represent combat-
ants and vehicles as groupings). It will also
provide the appropriate representations of
the physical environment (e.g., terrain fea-
tures, weather, illumination, etc.) and its
effect on simulated activities and behaviors.

One aspect that makes the OOS unique
among Army simulations is its design for
use by three distinct Army M&S domains.
Specifically, the Advanced Concepts and
Requirements (ACR) domain uses M&S for
experimentation and analyses on Army doc-
trine and force-related concepts. The
Research, Development, and Acquisition
(RDA) domain uses M&S for acquisition
analyses focused on equipping and support-
ing currently fielded and future forces.
Finally, the Training, Exercises, and Military
Operations (TEMO) domain employs M&S
to train the force. It does so using live simu-
lation (actual equipment on training ranges),
virtual simulation (immersing the trainee
into a synthetic environment), and construc-
tive simulation (war games using computer-
generated forces).

It Is About Saving Resources
The OneSAF program concept originated
in January 1996 following an extensive study
concluding that the Army was caught in a
wasteful spending cycle, making identical or
similar enhancements to many legacy simu-
lations across three different user domains.
In May 1997, the deputy commanding gen-
eral for Training and Doctrine Command
approved the Mission Needs Statement for
OneSAF, which stated:

The need for OneSAF capabilities is

not a response to a specific warfight-
ing threat against the force; the need
is driven by the guidance to reduce
duplication of M&S investments,
foster interoperability and reuse
across M&S domains, and meet the
M&S requirements of the future
force. [2]

The Army decided the best approach for
overcoming the problems associated with
the multitude of aging simulations was to
create a single, general-purpose, entity-level
simulation and associated simulation event
support tool [3].

Lessons Learned From a
Legacy Simulation
The OneSAF program has drawn many
lessons from the now-retired Modular Semi-
Automated Forces (ModSAF) program.
While the ModSAF simulation was nowhere
near providing OOS’ required capabilities, it
was an entity-level military simulation serv-
ing a multi-domain M&S community. If not
for the decision to release the source code,
ModSAF would likely have been relatively
unknown.

Funded by the Defense Advanced
Research Projects Agency in the early 1990s,
ModSAF was developed to facilitate syn-
thetic environment research in support of
distributed interactive simulation applica-
tions. Word of the availability of source
code quickly spread through the M&S com-
munity, and requests for the software steadi-
ly grew up to the point of its retirement in
2002. By its end, more than 200 organiza-
tions had placed requests for the source
code. The OneSAF Program Office reaped
many lessons learned from the ModSAF
program – those worth continuing as well as
those that needed improvement.

Two ModSAF characteristics deemed
critical to the success of OneSAF include
the release of source code and the responsi-
bility to provide services to facilitate and

Open Source Opens Opportunities for
Army’s Simulation System

The One Semi-Automated Forces (OneSAF) Objective System is the U.S. Army’s next-generation, entity-level, simulation
system planned to provide a comprehensive set of tools supporting computer-based simulation event setup, execution, and review.
Postured as an open-architecture, open-source application, the OneSAF program will put this software into the hands of a
vast number of developers throughout the Department of Defense with the intent of creating unprecedented participation across
the modeling and simulation community to include multi-service, international, industry, and academia experts in the evolution
of the OneSAF system. This article describes the factors that led OneSAF to an open source development methodology, the
open source principles OneSAF is supporting, and the key processes and tools supporting the open source development.

Dr. Robert L. Wittman Jr.
MITRE Corporation

Douglas J. Parsons
Program Executive Office

Open Source Software

12 CROSSTALK The Journal of Defense Software Engineering January 2005

enhance communications among the
OneSAF user community. How OOS
embraces these characteristics is described
in the following paragraphs.

Open Source and OneSAF
Releasing source code as part of DoD
applications raises numerous questions
ranging from security concerns to baseline
configuration management to cooperative

development and, finally, integration. To
address these concerns and to abide by
DoD acquisition guidelines, OneSAF nec-
essarily qualifies its definition of open
source development.

For the vast majority of organizations
that will request the OneSAF baseline, the
distribution process will be much like that
employed with ModSAF where the program
manager (PM) of OneSAF distributes the

baseline with source code at no cost. This is
a condition where OneSAF aligns directly
with a primary tenet of open source soft-
ware as defined by the Open Source
Initiative; however, there are key distinctions
between the open source tenets and the
OneSAF distribution model. The Open
Source Initiative defines open source as
software that provides the following rights
and obligations [4]:
a) No royalty or other fee imposed upon

redistribution.
b) Availability of the source code.
c) Right to create modifications and deriv-

ative works.
d) May require modified versions to be dis-

tributed as the original version plus
patches.

e) No discrimination against persons or
groups.

f) No discrimination against fields of
endeavor.

g) All rights granted must flow through
to/with redistributed versions.

h) The license applies to the program as a
whole and to each of its components.

i) The license must not restrict other soft-
ware, thus permitting the distribution of
open source and closed source software
together.
Of these, a, b, c, g, and h apply to the

OneSAF distribution process. While not
classified, the OOS will have content (e.g.,
data, algorithms) deemed sensitive by the
U.S. Department of the Army. The baseline
cannot be freely distributed as defined for
open source due to security reasons. As
such, PM OneSAF must be selective in the
distribution of the OOS baseline. Essen-
tially, there are two basic commitments
made when a user signs a OneSAF distribu-
tion agreement:
1. Authorization to redistribute the base-

line is restricted to PM OneSAF.
2. Users who develop new functionality

into the OneSAF baseline agree to pro-
vide those capabilities back to PM
OneSAF for possible reintegration.
These constraints offer advantages

across the OneSAF user community.
Facilitating distribution through a single
focal point allows the PM to have knowl-
edge of whom and how users intend to use
the baseline. This knowledge will enhance
the ability to identify and integrate useful
community-developed capabilities into
future baseline releases.

Helping to Communicate
In light of the restrictions OneSAF impos-
es on pure open source distribution, the
OneSAF leadership felt compelled to pro-
vide communication-enhancing tools and
processes that were seen as critical to the

Tool Description

Web-Based

OneSAF
Objective
System

Development
Portal

The cornerstone of the OneSAF development environment is

<https://www.OneSAF.net>. It is a secure Web site that houses technical
information and historical and current programmatic, organizational, and
task order structure. Technical information from architectural designs

down to the Application Programmer's Interface (API) descriptions can
be found on the site. The API descriptions are provided by automated
code scrappers that generate Javadocs on a periodic basis. User ID and

password are required.

Apache HTTPS

Server

The Apache server <www.apache.org> provides a Web server for the

OneSAF.net environment.

Mailman Distributed asynchronous discussions and archiving is provided via
e-mail using the Gnu's Not Unix free, open source product Mailman

<www.gnu.org/software/mailman>. Mailman provides an integrated Web
environment for managing e-mail discussions and e-newsletter lists. It
offers a complement of mail list functionality, including built-in archiving,

automatic bounce processing, content filtering, digest delivery, spam
filters, and Web-based list administration.

Concurrent

Versioning
System .

Configuration management and revision control processes and services

are built around the Concurrent Versioning System (CVS)
<www.cvshome.org> CVS version 1.10.8 is freely available open source
software, and provides revision control for all software development and

Web-based information developed and used by the OneSAF team.

The Dynamic

Object-Oriented
Requirements
System

provided by the

Automated support for requirements management and tracking is

Dynamic Object-Oriented Requirements System
(DOORS) <www.telelogic.com>. Although neither freely available nor
open source, this automated tool supports the requirements-driven

OneSAF development process. DOORS version 7.0 provides automated
support for OneSAF's rigorous requirements analysis and tracking
process and is accessible to all task order participants within the

OneSAF Integration and Development Environment building. DOORS
allows requirements storage and retrieval, and maintains linkages between
user, system, and software requirements.

Together
Control Center

Automated software design and development support is provided by the
Together Control Center (TCC) version 6.0 <www.togethersoft.com>. The
TCC is neither free nor open source, but is necessary to meet the managed

Software Engineering Institute Level 4 software development process in
use by the architecture and integration contractor. The TCC allows
integrated access to a user-configurable suite of software development

tools. These tools span the software development life cycle from analysis
through test.

WebRT
WebRT tool

Automated risk tracking, action-item tracking, and defect tracking are

handled using the freely available open source
<www.bestpractical.com/index.html>. WebRT 1.0.1- 4 has been
customized to provide a Web-enabled tool to track and manage defects,

issues, risks, and action items within OneSAF.

Java

v

Java provides a platform-independent development language and
development kit to OneSAF. Sun's Java version 2.0

<www.javasoft.com>, along with the Software Development Kit (SDK)
ersion 1.4.1, provides the Java language programming foundation for

the OneSAF integrated drive electronics. OneSAF is reviewing the

capabilities and schedule for stepping up the next major release of the
Java SDK.

XML Spy

.>

e

<

On

As data architecture and management play a critical role across the pre-
exercise, run time, and post-exercise activities, OneSAF is leveraging
eXtensible Markup Language (XML) technologies including XML Spy

www.xmlspy.com XML Spy version 4.0 provides the OneSAF users
within the IDE the ability to create XML schemas that comply with the

SAF Data Interchange Formats (DIF) standards. XML Spy features a

format checking and validation tool to cross-check a document against its
DIF.

Table 1: Enabling Tools for OneSAF Open Source Development

Open Source Opens Opportunities for Army’s Simulation System

January 2005 www.stsc.hill.af.mil 13

success of ModSAF. For OneSAF these
tools leverage Web- and e-mail-based tech-
nologies. For a list and description of these
tools and technologies, see Table 1.

These tools are actively in use and have
provided huge dividends in terms of user
engagement and feedback. As part of the
normal OneSAF development process,
users review demonstrable capabilities and
code and then electronically submit their
comments, enhancements, and/or changes
with supporting documentation to the Web-
served comment and defect repository.
These submissions are reviewed, catego-
rized, and assigned for action.

After OneSAF Full Operational
Capability at the end of fiscal year 2005,
these Web-based tools may be enhanced to
support code updates that can be inserted
into an integration branch, compiled, and
automatically regression tested with the
results posted to the OneSAF Web and noti-
fication e-mailed to the developer. Currently,
architecture compliance tools and processes
exist to allow external developers to plan for
a specific level of integration with the
OneSAF code. The external developers’
decisions are dependent on their require-
ments and investment in existing applica-
tions. Prior to formal baseline integration,
new code that has been successfully inte-
grated will be posted for download at the
users own risk.

A formal OneSAF Configuration
Control Board (CCB) will choose which
newly integrated capabilities to incorporate
into the next formally released baseline.
Once incorporated into the baseline, PM
OneSAF assumes responsibility for these
enhancements, distributes them within the
normal baseline distribution process, and
removes the pre-baselined code from the
use-at-your-own-risk Web page.

In addition to sponsoring CCB meet-
ings, OneSAF now holds regular user group
meetings for both the domestic and interna-
tional M&S communities. This user group
meeting gives users the opportunity to
exchange relevant information about One
SAF and its individual programs, demon-
strate new capabilities, voice concerns, raise
issues, and make recommendations.

Filling the Gaps
It was also critical to OneSAF’s success to
improve several ModSAF architectural
blemishes. These critical improvements
include (1) providing a more composable
and extensible software architecture; (2)
focusing on and providing tools for non-
programmers to extend the list of simulated
entities, units, and behaviors; (3) providing
mechanisms to support greater success
when integrating user-developed code; and

(4) providing mechanisms to fully document
the interfaces and code delivered.

To meet the challenges and limitations
of earlier simulation systems, the OneSAF
architects applied a software-based product-
line architecture development approach.
The product-line approach concentrates on
identifying and defining interfaces between
independent, architecture-level compo-
nents, and then specifies how these existing
components can be automatically composed
into useful end-user applications. Looking
back on the early – circa 2001– OneSAF
architectural development, three key archi-
tecture-related tenets stand out as significant
enablers to the four improvement areas
mentioned above, and to the overall success
of the program. These tenets include a
coordinated architectural vision, an iterative
and incremental development process, and
close user and developer collaboration.

Tenet I: Create a Coordinated System
Architectural Vision
For OneSAF, this was essential in orienting
and maintaining forward momentum on
two of the four critical improvement areas:
overall architecture support to composabili-
ty and extensibility requirements, and sup-
port for tool-based extensibility.

Composability and extensibility were
viewed as essential for OneSAF because
these characteristics were especially limited
by ModSAF’s architecture. ModSAF’s
aggregate applications made it difficult,
expensive, and time consuming for the com-
munity to make specific independent modi-
fications and for these modifications to be
integrated back into the baseline. This was
particularly true when multiple modifica-
tions were made to a single application.

The OneSAF architecture vision was
developed early on in concert with the pro-
curement team, the users, and the develop-
ers. The vision focused on system-level
composability and the architecture’s ability
to support independent component devel-
opment along well-defined interfaces within
quality and functional compliance specifica-
tions. This was the key to enabling the gov-
ernment’s task order procurement strategy
of issuing multiple contracts to develop the
independent system components.

An architecture and integration contract
was also issued to finalize the interface,
functional, and quality specifications, as well
as to create the development infrastructure
[3] and develop the initial toolset. By forging
this vision early on, the program was able to
develop a set of objective measures called
interface maturity levels used to define objec-
tives and emphasize and measure progress
against the OneSAF requirement set.

Since program inception, from the

architecture level down to implementation,
particular emphasis has been on the com-
posability tools allowing end-users to com-
pose new entities, units, and their associated
behaviors from existing software primitives
without the need to write or even access the
source code. These tools are highlighted in
the OneSAF architecture as the Model
Composer tools and include the Entity
Composer, the Unit Composer, and the
Behavior Composer.

The Entity Composer allows a OneSAF
simulation entity such as an aircraft, heli-
copter, tank, truck, or individual combatant
to be composed from individual model
components using a Windows-based graph-
ical user interface (GUI). Model compo-
nents may include visual or other radar-
based sensors, specific types of weapons,
specific communications devices, and spe-
cific mobility components such as wheeled or
tracked. Additionally, the user can select spe-
cific types of physical models that regulate
the vulnerability, load carrying capacity, and
other physical aspects of the entity.

The Unit Composer supports grouping
individual entities into military units and
civilian organizations using a GUI-based
front end. The Unit Composer allows visu-
alization and modification of all entities and
previously constructed units. Once a unit is
constructed, specific behaviors defining the
doctrine and tactics of the unit can be asso-
ciated with the unit. These behaviors are
constructed using Behavior Composer.

The Behavior Composer allows the
graphical construction of entity and unit
behaviors from existing primitives (software
coded behaviors) and other composite
behaviors. Composite behaviors are simply
behaviors that are made up of other com-
posite or primitive behaviors. The Behavior
Composer allows the specification of
sequential or parallel behaviors that provide
the automated control, reactions, and over-
all behaviors of entities and units.

Tenet II: Use an Iterative and
Incremental Development Process
For OneSAF, an iterative and incremental
process enabled two important effects. First,
it allowed the program to create and test,
through successive iterations, a set of con-
sistent, comprehensive, and useful architec-
tural- and implementation-level documenta-
tion. It also allowed the program to test and
streamline its support for external develop-
ment and integration, again, by applying
lessons learned through successive iterations
of the integration and test process.
Specifying the architectural vision on paper
and then working toward that vision in code
allowed negotiated changes to the architec-
ture where necessary to maintain consisten-

Open Source Software

14 CROSSTALK The Journal of Defense Software Engineering January 2005

cy with the code. Changes occurred due to
developmental breakthroughs, clearer un-
derstanding of requirements, or necessary
changes due to reuse of legacy applications.

OneSAF continues to use an eight-week
build process as the cornerstone for soft-
ware and system engineering activities. The
builds begin with defined, measurable, and
in many cases, demonstrable objectives and
then progress through analysis, design, code,
and unit test. During the subsequent build,
the previous build’s products are sent
through a system-level integration and test
process. At yearly intervals, the system is
packaged and delivered to a restricted set of
beta-test sites. OneSAF is currently in its
Block C development cycle and has success-
fully released its Block A and B system
products to more than 50 beta-test sites.

For OneSAF, the iterative and incre-
mental process also enabled the drive to
demonstrate capabilities early and often to
support a rich level of user interaction and
feedback across the ACR, RDA, and
TEMO domains.

Tenet III: Establish and Maintain Close
User and Developer Collaboration
For OneSAF, this enabled continual feed-
back, prioritization, and interpretation of
key user needs and requirements. The cur-
rent success of the OneSAF program is also
attributed to these close developer and user
interactions. From the start, the develop-
ment and user representative teams have
been collocated in the OneSAF Integrated
Development Environment, thereby
enabling easy and frequent interaction
between the more than 100 system and soft-
ware engineers, the government manage-
ment and technical personnel, and the
domain (ACR, RDA, and TEMO) user rep-
resentatives. This interaction is key to short-
ening the development cycle, as domain-
specific questions can be quickly resolved.

Conclusion
From the start, OneSAF leadership has
encouraged non-traditional software
development methods. Open source
development remains central as a new way
to create, distribute, proliferate, and
extend the simulation capabilities
promised by OneSAF. Using lessons from
earlier simulations, open source concepts
played heavily in the selection and creation
of processes and tools to meet the
requirements of the OneSAF program.

Open source development has already
paid large dividends to the OneSAF pro-
gram ranging from enhanced Web-based
communications between developers and
users gained from using open source Web-
based servers, mail lists, and request tracking

software, to the advanced native capabilities
within the Java development environment.
OneSAF leadership believes the benefits of
open source development will expand upon
OneSAF’s formal release by allowing a wide
range of developers to contribute to and
propose extensions back to the OneSAF
baseline. Once integrated into the core base-
line, a capability developed by a given orga-
nization is available for use and extension by
the community of OneSAF users.

Although OneSAF is still in develop-
ment, once formally released in fiscal year
2006, it will be available and distributed with
source code free of charge to any organiza-
tion within the DoD with a valid OneSAF
requirement. While OneSAF is focused as
an Army/DoD program, other inter-agency
organizations (e.g., other services, homeland
defense, emergency response groups/
police, etc.), industry, and academia can gain
access to the application.

OneSAF will also be available to the
international community. Typically, inter-
national arrangements are made either
through data exchange agreements, for-
eign military sales cases, or project agree-
ments. Because of the sensitive nature of
OneSAF, removing the non-exportable
data and algorithms will develop a special-
ized international baseline.

Finally, as OneSAF prepares to enter its
final year of development prior to formal

release, it will evaluate and grow the neces-
sary capabilities to accommodate distributed
open source development. It is expected,
based on lessons learned and experience to
date, that the necessary tool and process
changes will be small incremental changes
versus an explosive big bang event.

To find out more about the OOS, please
contact the authors, PM OneSAF, Lt. Col.
John “Buck” Surdu at <john.surdu@
peostri.army.mil>, or visit <www.one
saf.org>.u

References
1. Hasan, Ragib. “History of Linux.” Vers.

2.1. University of Illinois at Urbana-
Champaign, July 2002 <https://net
files.uiuc.edu/rhasan/linux>.

2. Training and Doctrine Command.
“Mission Needs Statement.” U.S. Army,
2004 <http://onesaf.org/1SAFMNS.
doc>.

3. Wittman, Robert L., and Anthony J.
Courtemanche. “The OneSAF Product
Line Architecture: An Overview of the
Products and Process.” SimTeCT 2002.
Melbourne Convention Center,
Melbourne, Australia, 13-16 May 2002.

4. Webbink, Mark H. “Understanding
Open Source Software.” Society for
Computers and the Law (51) Mar. 2003
<www.nswscl.org.au/journal/51/
Mark_H_Webbink.html>.

About the Authors

Douglas J. Parsons is
the lead engineer of the
Intelligent Simulation
Systems Team at the U.S.
Army Program Executive
Office for Simulation,

Training, and Instrumentation. His pri-
mary focus is toward the successful
development of the One Semi-
Automated Forces Objective System.
Parsons has a Bachelor of Science in
mechanical engineering from North
Dakota State University, a Master of
Science in systems management from
Florida Institute of Technology, and a
Master of Science in industrial engineer-
ing from the University of Central
Florida.

Program Executive Office-Simulation
Training and Instrumentation
(PEO-STRI)
12350 Research PKWY
Orlando, FL 32826
Phone: (407) 384-3821
E-mail:doug.parsons@peostri.army.mil

Robert L. Wittman Jr.,
Ph.D., currently works
for the MITRE Corpo-
ration supporting the
One Semi-Automated
Forces Objective System

program. He has been part of the U.S.
Department of Defense modeling and
simulation community since 1990. He
has a Bachelor of Science in computer
science from Washington State Univer-
sity, a Master of Science in software engi-
neering from the University of West
Florida, and a doctorate in industrial
engineering from the University of
Central Florida.

MITRE Corporation
3504 Lake Lynda DR
Orlando, FL 32817
Phone: (321) 235-7601
E-mail: rwittman@mitre.org

January 2005 www.stsc.hill.af.mil 15

Let us take a look at two different scenar-
ios of development teams challenged to

integrate different computing devices or
upgrades into their systems.

Scenario 1: A development team is
charged with creating a software system that
users can access through a variety of client
computing devices. Tasked with providing
desktop access for internal users, Web access
for external users, access via a wireless-
enabled Personal Digital Assistant (PDA),
and voice-only access through telephones,
the development team writes user interfaces
in Java for the desktop platform, Hyper Text
Markup Language (HTML) for the Web, and
VoiceXML [eXtensible Markup Language]
for the voice interface. Having selected Palm
devices, they write the PDA user interface in
C for the PalmOS. As the system evolves,
they spend considerable effort making the
same or similar changes to each of these user
interfaces. A year into the project, manage-
ment decides to drop the Palm device and
instead support PocketPC PDAs. The team
rewrites the Palm user interface to run on
PocketPCs, which increases the project cost
and delays the schedule.

Scenario 2: A weapon systems project is
charged with improving the usability charac-
teristics of its software user interfaces and
adopts an iterative usability design process.
The user interface team needs to get an early
start on creating usability prototypes, but the
deployment hardware, operating system, lan-
guage, and user interface toolkit have not
been selected yet. The user interface design
team creates the usability prototypes in
VisualBasic, and when the deployment plat-
form is selected, rewrites the entire user
interface in C++. A few years later, a technol-
ogy refresh is planned to upgrade the deploy-
ment platform to take advantage of new
technologies. Plans for the upgrade are
dropped because the expense of rewriting
the user interface for the new platform is
prohibitive.

Unfortunately, scenarios like these two

are all too common for development teams
trying to integrate different computing
devices into their systems. While hardware
vendors have given us a rich array of com-
puting devices – PDAs with wireless con-
nectivity, cell phones, even the telephone –
the promise of these devices in providing
portable and easy-to-use access to data is dif-
ficult to realize using conventional software
development tools.

The problem is that the languages and
toolkits we use to describe software user
interfaces are tightly tied to the underlying
platform. Not only does this require devel-
opment teams to maintain proficiency in
many different languages, but it is difficult to
achieve reuse across these languages: When
the user interface changes, changes must be
applied separately to each platform’s user
interface code.

What if a single language existed that
could describe user interfaces independently
of client device? Such a language would need
to be able to completely describe the user
interface and its interactions with the under-
lying application logic. It would need to be
flexible enough to describe user interfaces
using widely different metaphors such as
graphic user interfaces, voice interfaces, inter-
faces for automotive on-board computers
with unconventional interaction devices, and
interfaces for devices not yet invented such as
those embedded in soldiers’ uniforms.

Such a language exists: the User Interface
Markup Language (UIML) [1]. UIML is an
XML-compliant language created with the
goal of describing any user interface for any
device, regardless of operating system or tar-
get programming language. User interface
descriptions written in UIML are rendered for
specific target platforms, much in the same
way that documents described in HTML are
translated into viewable documents by Web
browsers. UIML renderers can either be
interpreters that read the UIML and create
the user interface at run time, or compilers
that translate UIML into other languages.

UIML renderers have been developed for
Java, HTML, Wireless Markup Language
(WML), VoiceXML1, .NET [2], Python [3],
and even for augmented reality applications
[4]. UIML was the subject of an internation-
al conference in 20012.

Original Motivation for UIML
UIML was developed by a team of
researchers in Blacksburg, Va., starting in
1997, and has been enhanced by several
organizations, including Virginia Tech. The
team was frustrated with the poor usability
characteristics of many software user inter-
faces and the difficulty in creating good user
interfaces with existing languages and tools.
Increasingly, user interface design required
skills often not present in development
teams, such as visual layout, an orientation
toward how human users carry out tasks, and
graphic design. Yet, designers were required
to use programming languages such as C,
C++, and Java, which were fundamentally
designed to describe application logic.

These problems led to a desire to create
a language designed specifically for user
interface design. To stay oriented to the
needs of user interface designers, UIML was
designed as a declarative language; that is,
UIML would describe what the user inter-
face looks like (as HTML describes docu-
ments), rather than the steps followed in
building the user interface (as do languages
such as C++ and Java). UIML is an XML-
compliant language taking advantage of the
availability of XML tools. UIML is an open
language being standardized through the
Organization for the Advancement of
Structured Information Standards (OASIS)
[5]3; the language specification is available at
<www.uiml.org>.

UIML Applications in DoD
UIML is gaining interest in the Department
of Defense as a technology for implement-
ing user interfaces for complex software sys-
tems with long lifetimes. The Navy’s Tactical

Introduction to the
User Interface Markup Language

Current languages and tools for creating software user interfaces are tightly tied to the computing device on which the user inter-
face runs. For example, development teams often use Java or C++ for graphic user interfaces, Hyper Text Markup Language
for Web interfaces, the Wireless Markup Language for cell phones, and VoiceXML [eXtensible Markup Language] for
voice interfaces. The tight coupling of language to device means that to use a variety of devices with software systems, develop-
ment teams must master different languages and toolkits and maintain different code bases for each device. This article intro-
duces the User Interface Markup Language (UIML), an open XML-compliant language capable of describing user inter-
faces for virtually any computing device. It describes how UIML can be used for creating multi-platform user interfaces, how
it is being applied in defense applications, and introduces UIML syntax.

Jonathan E. Shuster
Acumenia, Inc.

Open Source Software

16 CROSSTALK The Journal of Defense Software Engineering January 2005

Tomahawk Weapons Control System
(TTWCS) program sees UIML as a way to
help automate the generation of deployable
code from usability prototypes. UIML also
addresses the need to adapt weapon system
control user interfaces to accommodate dif-
ferent watchstations used on different ship
classes. TTWCS is sponsoring the develop-
ment of UIML authoring and deployment
tools under the Small Business Innovation
Research (SBIR) program. A preliminary
estimate made under the SBIR Phase I pro-
ject suggested that adopting UIML could

save the program between $1.5 million and
$3 million for a typical TTWCS software ver-
sion, allowing accelerated delivery of critical-
ly needed new features to the fleet.

The Navy’s DD(X) shipbuilding pro-
gram sees UIML as an excellent way to
implement a common computing environ-
ment across all shipboard software systems.
UIML makes it possible to apply common
characteristics to all user interfaces such as
the look and feel and layout of interaction
mechanisms. UIML also provides a way to
achieve significant reuse across software sys-

tems, not only for visual characteristics, but
also for underlying mechanisms such as the
programming interfaces used to interact with
the underlying applications.

In the Army, UIML has been used on the
Army Training Information Architecture
program to make it possible to deliver train-
ing documentation to small-aperture devices
such as handheld computers and PDAs.
Even though much of the Army’s training
documentation is in HTML format, viewing
legacy HTML on PDAs presents a host of
usability problems (described as “like watch-
ing TV through a soda straw”). In a pilot
project, legacy HTML was converted into
UIML, and then delivered by a UIML server
to the client device. Based on the device
requesting the document (desktop or PDA),
the UIML server transformed the UIML
description based on device characteristics,
then rendered the UIML into HTML tai-
lored for optimal viewing on the device.

UIML: A Canonical
Meta-Language
UIML is a canonical meta-language for
describing software user interfaces. As a
canonical language, UIML regularizes the
idiosyncrasies in syntax across device lan-
guages. The table below shows how UIML
reduces the syntactical differences across
HTML, Java, and C++ with the GTK+
(Gnu’s Not Unix [GNU] Image
Manipulation Program Toolkit) widget set to
canonical form.

HTML:
<input name=“submit”>

Java:
JButton submit = new JButton();

C++/GTK:
GtkWidget *button = gtk_button_new();

UIML:
<part class=“Button” id=“okButton”/>

By reducing the definition to a standard
form, renderers can be used to translate
UIML into any of the other forms. This
means that as new devices, operating sys-
tems, and programming languages emerge, it
is not necessary to change UIML user inter-
face descriptions. Rather, the UIML is simply
re-rendered for the new platform.

Being a meta-language gives UIML the
flexibility to describe user interfaces for wide-
ly different devices. Rather than having many
toolkit-specific tags (such as <menu> or
<button>) covering all possible user inter-
face metaphors, UIML uses a few powerful
tags (such as <part> and <property>). As
with XML, where you add a schema to make
it useful, you add a vocabulary to UIML to
define the abstractions that are needed to
describe the user interface. These abstrac-

UIML Examples 1-4

<?xml version=“1.0”?>
<!DOCTYPE uiml PUBLIC “-//UIT//DTD UIML 3.0x Draft//EN”
“http://uiml.org/dtds/UIML3_ 0a.dtd”>

<!-- Example 1: The UIML Skeleton -->

<uiml>
<interface>

<structure>…</structure>
<style>…</style>
<content>…</content>
<behavior>…</behavior>

</interface>
<peers>

<logic>…</logic>
<presentation base=“…”…/>

</peers>
</uiml>

<!-- Example 2: Defining Parts -->
<structure>

…
<part id=“okButton” class=“Button”/>
…
<part id=“aPanel” class=“Panel”>

<part id=“aField” class=“Field”/>
</part>
…

</structure>

<!-- Example 3: Defining Properties of Parts -->
<style>

…
<property class-name=“Button” name=“size”>20,20</property>
…
<property part-name=“okButton” name=“size”>40,20</property>
…

</style>

<!-- Example 4: Two Ways to Define Content -->
<style>

…
<property part-name=“okButton” name=“text”>Okay</property>
…
<property part-name=“aField” name=“text”>

<reference constant-name=“welcomeText”/>
</property>
…

</style>

Figure 1: UIML Examples 1-4

Introduction to the User Interface Markup Language

January 2005 www.stsc.hill.af.mil 17

tions can be platform-specific (e.g., defining a
JButton class for Java Swing), or generic
across similar platforms (e.g., a Button class to
use for graphic user interfaces)4. Vocabularies
can be used to define domain-specific
abstractions such as SteeringWheelButton for
automotive user interfaces.

UIML vocabularies define allowable
parts and classes, properties, and events, and
map these abstractions to specific widgets in
the target language and toolkit. For example,
a Button class can be defined that maps to
java.swing.JButton for Java with the Swing
toolkit. Vocabularies have been defined for
Java, HTML, VoiceXML, WML, and other
target languages5.

What Does UIML Look Like?
The UIML Skeleton
Describing a user interface requires answer-
ing six questions:
1. What structure of parts makes up the

user interface?
2. What presentation style should be used

for each part?
3. What is each part’s content?
4. What behavior do parts have (that is,

what should happen when, for example,
a user clicks on a button)?

5. How does the user interface connect to
the underlying application logic?

6. How are parts mapped to widgets in the
target toolkit?
UIML separately describes these six

aspects of the user interface definition. The
answers to the first four questions define the
interface itself; the last two define how the
interface interacts with the outside world.
Thus, the basic skeleton of a UIML user
interface is shown in Example 1 in Figure 1.

The first group of lines is an XML doc-
ument type declaration that marks this as a
UIML document. The remaining lines show
the basic skeleton of a UIML document.
Note that the <structure>, <style>, <con-
tent>, and <behavior> tags address the first
four questions about the user interface. The
<logic> tag addresses connections to the
underlying application logic (question No. 5),
and the <presentation> tag addresses tool-
kit mappings (question No. 6).

Defining these six aspects separately
enables reuse. For example, consider an
automotive manufacturer creating Web ver-
sions of the owner’s manuals for each of its
models. It is not unusual for owner’s manu-
als to be translated into as many as 25 differ-
ent human languages depending on where
the model is sold. Using HTML, 25 separate
Web applications would be needed for each
model. If the structure of the owner’s man-
ual changes, the changes would need to be
applied to all 25 Web applications.

With UIML, the owner’s manual applica-

tion would be defined as a single UIML
document. Different <content> sections
would be defined for each language, and the
appropriate content section specified at
rendering time. The structure, style, and
other characteristics of the owner’s manual
application are defined only once, and
changes to these characteristics need only
be applied in one place.

Similarly, reuse can be achieved with the
other major sections of a UIML document.
For example, different style guidelines can be

applied to user interfaces by using different
<style> sections. Application interfaces,
defined in the <logic> section, can be writ-
ten once and reused in UIML written for dif-
ferent platforms.

UIML has several mechanisms to sup-
port reuse. Most notably, it includes the con-
cept of templates, external files containing
commonly used UIML definitions. In addi-
tion, some renderers allow specifying UIML
tags by name; for example, allowing multiple
<content> tags for different human lan-

UIML Examples 5-8

<!-- Example 5: Defining Alternative Content Sets -->
<content id=“English” xml:lang=“en-US”>

<constant id=“welcomeText”>Welcome</constant>
…

</content>
<content id=“French” xml:lang=“fr”>

<constant id=“welcomeText”>Bienvenue</constant>
…

</content>

<!-- Example 6: Defining Behavior -->
<behavior>

<rule>
<condition>

<event class=“actionPerformed” part-name=“okButton”/>
</condition>
<action>

<property part-name=“aWindow” name=“visible”>
FALSE

</property>
<property part-name=“aDialog” name=“visible”>

TRUE
</property>

</action>
</rule>

</behavior>

<!-- Example 7: Making Application Calls -->
<behavior>

<rule>
<condition>

<event class=“actionPerformed” part-name=“okButton”/>
</condition>
<action>

<property part-name=“aLabel” name=“text”>
<call name=“Counter.count”/>

</property>
</action>

</rule>
</behavior>

<!-- Example 8: Mapping UIML Calls to The Application -->
<logic>

<d-component id=“Counter” maps-to=“AppCounter”>
<d-method id=“count” return-type=“int” maps-to=“bumpCount”/>

</d-component>
</logic>

Figure 2: UIML Examples 5-8

Open Source Software

18 CROSSTALK The Journal of Defense Software Engineering January 2005

guages, and selecting which content set to
use at rendering time.

The following sections give an overview
of the six sections of a UIML document. It
is not possible to completely describe UIML
syntax in one article; however, considerable
information about UIML is available in the
references listed at the end of this article.

Defining Structure
The <structure> tag defines the parts that
make up the user interface. Nested parts are
defined, appropriately, by nesting <part>
tags. Example 2 in Figure 1 (see page 16)
shows UIML defining a top-level part (a but-
ton of class Button named okButton), and a set
of nested parts (a panel containing a text
field).

Defining Style
The <style> tag describes the properties
of each part. Properties can be associated
with either individual parts or classes of
parts, as shown in Example 3 in Figure 1
(see page 16).

In the first <property> tag, the default

size of all buttons in the Button class is set
to 20 by 20 pixels. In the second <property>
tag, the size of the button named okButton
is set to 40 by 20 pixels.

Defining Content
Content can be defined in UIML as a part’s
property, or can be defined in a separate con-
tent section as described earlier. Example 4
in Figure 1 (see page 16) shows both meth-
ods: The first property tag defines the con-
tent of okButton as the text Okay. The sec-
ond property tag references a constant
named welcomeText.

The constant referenced in the second
property tag is defined in the <content> tag.
Example 5 in Figure 2 (see page 17) shows
UIML defining two alternative content tags,
for English and French, for selection at ren-
dering time.

Defining Behavior
Behavior is defined as a set of rules. Each
rule describes an action to be carried out
under a given condition. Actions can include
changing properties or making application

calls. Example 6 in Figure 2 (see page 17)
shows a rule specifying that when a button is
pressed, the active window is closed and a
confirmation dialog is opened. The window
is closed by setting its visible property to
FALSE; similarly, the dialog is opened by set-
ting its visible property to TRUE.

In this example, the condition is the
occurrence of an event. Allowable event
types are defined in the vocabulary. Other
conditions may also be used such as equality
between a property and a constant, for
example.

Making Application Calls
Calls to the underlying application are
defined with the <call> tag. In Example 7 in
Figure 2 (see page 17), the result of the call
is used to set the content of a text label.

The <call> tag references the value
returned by the count method on the Counter
object. Placing the call tag in the <property>
tag has the effect of resetting the text prop-
erty to the value returned by the <call>.

Mapping Calls to Application Logic
Note that <call> tags define application calls
in an abstract form. The <logic> section
maps UIML calls to specific objects and
methods (or procedures) in the underlying
application. This means calls can be easily
remapped to different application interface
calls simply by changing the definition in the
<logic> section. Example 8 in Figure 2 (see
page 17) maps the abstract call Counter.count
to a specific object and method in the under-
lying application (AppCounter.bumpCount).

In this example, the <d-component>
tag (for defined component) maps the UIML
component Counter with the application’s
AppCounter object. Similarly, the <d-
method> tag (for defined method) maps the
UIML count method with the AppCounter
object’s bumpCount method, and specifies
an integer return type.

Responding to Application Events
Rules can be defined that allow the user
interface to respond to events received by
the underlying application. Example 9 in
Figure 3 shows a rule that allows a part to
display updated global positioning system
(GPS) coordinates upon receiving an event
indicating the location has changed.

In this example, the condition that fires
the rule is when the event equals a certain
constant. The action is to call a method to
get new GPS coordinates, and display the
return in the GPSLocationLabel part.

Mapping UIML Abstractions to
Specific Toolkit Widgets
The <presentation> section defines the
vocabulary to be used. Normally, the <pre-

UIML Examples 9-11

<!-- Example 9: Responding to an Application Event -->
<rule>

<condition>
<equal>

<event part-name=“GPSLocationLabel”
class=“propertyChange”
name=“propertyName”/>

<constant value=“GPS_CHANGE”/>
</equal>

</condition>
<action>

<property part-name=“GPSLocationLabel” name=“text”>
<call name=“navigation.getNewGPSCoordinates”/>

</property>
</action>

</rule>

<!-- Example 10: Specifying A Vocabulary -->
<presentation source=“Java_1.3_Harmonia_1.0.uiml#vocab”/>

<!-- Example 11: Vocabulary Mappings -->
<uiml>

<template id=“vocab”>
<presentation base=“Java_1.3_Harmonia_1.0”>

<d-class id=“JButton” used-in-tag=“part”
maps-type=“class”
maps-to=“javax.swing.JButton”>
…

</d-class>
…

</presentation>
</template>

</uiml>

Figure 3: UIML Examples 9-11

January 2005 www.stsc.hill.af.mil 19

sentation> tag references a vocabulary
defined in an external file, as shown in
Example 10 in Figure 3.

The vocabulary itself maps abstrac-
tions used in the UIML user interface to
specific toolkit widgets. Example 11 in
Figure 3 shows part of a Java vocabulary
that maps the JButton class to a specific
Java Swing object.

Conclusion
In the early days of personal computing,
peripheral devices were tightly coupled to
application software. This meant that users
had to make sure the software they bought
was compatible with their specific printer,
modem, or other peripherals. Making device
drivers a part of the operating system uncou-
pled peripherals from applications, and now
users only need to worry about buying soft-
ware and peripherals that are compatible
with their operating system. This was a
tremendous step forward in the evolution of
personal computing.

UIML can have a similar impact on
application development. By defining user
interfaces in a platform-independent man-
ner, UIML decouples the user interface from
the underlying computing device. This
makes it easier to use a wide range of com-
puting devices in software applications, and
results in user interfaces that are much more
easily adapted to new computing devices as
they emerge on the market.u

References
1. Abrams, M., C. Phanouriou, A.L.

Batongbacal, S. Williams, and J.E.
Shuster. UIML: An Appliance-Indepen-
dent XML User Interface Language.
Proc. of the Eighth International World
Wide Web Conference, May 1999
<www8.org/w8-papers/5b-hyper
text-media/uiml/uiml.html>.

2. Luyten, K. “UIML.Net: A UIML Ren-
derer for .Net.” Limburgs Universitair
Centrum, Jan. 2004 <http://research.
edm.luc.ac.be/kris/projects/uiml.net>.

3. Cherkashin, E. “Python UIML
Renderer.” Apr. 2001 <http://fresh
meat.net/projects/pyuiml>.

4. Sandor, C., and T. Reicher. CUIML: A
Language for Generating Multimodal
Human Computer Interfaces. Proc. of
the UIML 2001 Conference, May 2001
<www.uiml.org/cd_updates/UIML_
2001_Conference/papers/Sandor_
paperFinal.pdf >.

5. Abrams, M., and J.W. Helms. “User
Interface Markup Language (UIML)
Specification 3.1.” Working Draft 3.1.
OASIS Open, Inc., 2004 <www.oasis
-open.org/committees/tc_home.php
?wg_abbrev=uiml>.

Notes
1. Tools for using UIML have been devel-

oped by a number of organizations,
most notably Harmonia, Inc., of
Blacksburg, Va., <www.harmonia.
com>. The U.S. Navy is sponsoring the
development of additional tools through
its Small Business Innovation Research
program, including the development of a
UIML authoring environment.

2. Information about this conference,
including papers presented, is available
on the Web at <www.aristote.asso.
fr/sem/sem0101UIML-en. html>.

3. For more information about the OASIS
UIML standardization technical commit-
tee, and for the most recent draft UIML
specification, see <www.oasis-open.
org/committees/uiml>.

4. UIML is object-based in that it allows defin-
ing classes of parts, but does not support
other object-oriented concepts such as
inheritance.

5. The UIML Web site, <www. uiml.org>,
is a good site for information on UIML.
Besides specifications and document
type definitions, a number of UIML
vocabularies are posted here (see <www.
uiml.org/toolkits/index.htm>).

Introduction to the User Interface Markup Language

About the Author

Jonathan E. Shuster,
founder and president of
Acumenia, Inc., provides
management and techni-
cal services to software
engineering organiza-

tions. He has led development teams for
Navy, Army, and Department of Energy
applications ranging from information
systems to simulation models to three-
dimensional stereo-immersive virtual
environments. He was a member of the
original team that invented the User
Interface Markup Language, an
eXtensible Markup Language-compliant
language for creating user interfaces for
virtually any computing platform. His
passion is helping people understand
information-related problems and
deploying the appropriate technology to
solve those problems

Acumenia, Inc.
1872 Pratt DR, STE 1425
Blacksburg,VA 24060
Phone: (540) 250-1300
Fax: (724) 271-0025
E-mail: jshuster@acumenia.com

February 2-4
16th Annual NDIA SO/LIC
Symposium & Exhibition

Washington, DC
http://register.ndia.org/interview/

register.ndia?

February 7-10
Commercialization of Military and

Space Electronics Conference
& Exhibition

Los Angeles, CA
www.cti-us.com/ucmsemain.htm

February 14-17
LinuxWorld
Boston, MA

http://www.linuxworldexpo.com/
live/12/events/12BOS05A

February 23-27
SIGCSE 2005

Technical Symposium on Computer
Science Education
St. Louis, MO

http://www.ithaca.edu/sigcse2005/
index.html

February 28-March 3
21st National Logistics Conference

& Exhibition
Miami, FL

http://register.ndia.org

March 5-12
IEEE Aerospace Conference

Big Sky, MT
http://www.aeroconf.org

March 15-16
Dayton Information Security Conference

Dayton, OH
www.gdita.org

April 18-21
2005 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

20 CROSSTALK The Journal of Defense Software Engineering January 2005

DO-178B Certified Software:
A Formal Reuse Analysis Approach

Hoyt Lougee
Foliage Software Systems

In these lean economic times, avionics manufacturers have a heightened interest in certifiable software reuse as an alternative
to developing design-from-scratch software for next-generation systems. When appropriate, software reuse can provide signifi-
cant return on investment and time-to-market advantages.

Software Engineering Technology

As indicated in the December 2004
CrossTalk article “Reuse and

DO-178B Certified Software: Beginning
With the Basics,” [1] reuse is defined sim-
ply as “using previously existing software
artifacts.” These artifacts may or may not
have been designed for reuseability. In
fact, these artifacts may be proposed arti-
facts intended for future reuseability.

Artifacts include all products of a cer-
tification development process: planning
data, requirements data, design data,
source code, configuration management
records, quality assurance records, and
verification data. Artifacts extend over all
functional areas of software. A sample
breakdown is illustrated in Figure 1.

Reuse Stakeholders
In identifying the purpose and goals, and
selecting the optimal approach, the reuse
analysis must take into account the views
of the various stakeholders. Typical stake-
holders are described in Table 1. Each of
these stakeholder groups normally has

different expectations for reuse, as well as
different insight into the pros and cons of
a particular approach.

First-tier sources1, for example, are
concerned with cost, schedule, function-
ality, and safety. The reuse strategy partic-
ulars that provide these benefits are typi-
cally of little importance to these first-tier
sources. Senior management usually rep-
resents the interests of the external cus-
tomer stakeholders.

On the other hand, cost and schedule
are not of paramount importance to the
Federal Aviation Administration/
Designated Engineering Representative
(FAA/DER). Safety is the primary driver
of the certification authorities (CA). The
reuse strategy selected, however, can
make the CA’s job easy or complex. A
properly designed and executed reuse
strategy will make it easier for the
FAA/DER to trace verification among
configurations to provide more confi-
dence and reduce the amount of review
to be performed.

Although cost, schedule, functionality,
and safety are also important to senior
management, the long-term efficiency
and profitability of their product lines are
also a priority, as are the competing short-
term budget limitations. Senior manage-
ment drives reuse strategies that accom-
modate the big picture.

Cost, schedule, functionality, safety,
and long-term efficiency and profitability
goals are flowed to project management.
At this level, however, concerns about
short-term feasibility, effects on staffing,
and the lower-level tactical implementa-
tion gain importance.

System engineers drive the hard-
ware/software functionality of the sys-
tem and are often the source of system-
level requirements allocated to software.
Since many software strategies must be
supported by or aligned to candidate
hardware configurations, systems engi-
neers are critical participants in the reuse
analysis process. Cost, schedule, function-
ality, safety, long-term efficiency and
profitability goals drive the systems engi-
neer across both the hardware and soft-
ware domains.

Development engineers and test engi-
neers have the cost, schedule, functional-
ity, safety, long-term efficiency and prof-
itability goals, as well as the expectation
for creating good software: software that
is flexible, extensible, and sustainable.
The short-term feasibility and the actual
nuts and bolts of the implementation are
also placed on their doorstep.

Quality engineers must verify the soft-
ware configurations produced and must
be efficient when doing so. Efficient
testability is a challenge for the quality
engineer in two ways:
1. Reusing tests and test results for

reuseable components can reduce the
amount of testing performed on new
platforms, as well as reduce the over-
all number of tests to be created.

2. Ensuring that end-to-end functionali-
ty is verified to make certain that
reused components are used correctly.

Reviews

Reviews

Reviews

Reviews

Reviews

Planning Data

Requirements

Design Data

Source Code

Test Cases and Procedures

Quality Assurance Data

Configuration Management Data

Quality Assurance Data

Configuration Management Data

Quality Assurance Data

Configuration Management Data

Quality Assurance Data

Configuration Management Data

Quality Assurance Data

Configuration Management Data

Figure 1: Reusable Artifacts

DO-178B Certified Software:A Formal Reuse Analysis Approach

January 2005 www.stsc.hill.af.mil 21

Clearly, these two goals can contradict
one another. If reusable components are
verified at the component level, end-to-
end verification testing may redo much of
the testing. Moreover, the FAA/DER
typically insists that significant end-to-
end testing be performed to ensure all
software components integrate properly.
Obviously, compromises are in order.

Finally, the configuration managers
have the considerable task of configuring
the reuseable elements to allow con-
trolled, traceable software releases. This
task must be performed early in the
process or the reuse effort suffers accord-
ingly. The viability of the reuse strategy
depends upon the ability to configure the
elements appropriately. This ability
depends upon a coherent and reasonable
configuration strategy, a suitable toolset,
and appropriate training and staffing.

Reuse Analysis and
Incorporation Process
As discussed in [1], reuse types vary
according to the reasons for reuse, as well
as the character of the elements to be
reused; however, the reuse analysis and
incorporation process is the same. Figure
2 describes a standard reuse analysis and
incorporation process.

Clearly Identify Purpose and Goals
The first step in our reuse analysis and
incorporation process is to clearly identi-
fy the purpose and goals of the reuse
effort. The reuse purpose is the business
problem to be addressed. Reuse goals, on
the other hand, are the competing bene-
fits that different reuse strategies yield.

To effectively identify purpose and
goals, you must rid yourself of the idea
that you can have everything: Tradeoffs
must be made. Optimal purpose identifi-
cation often entails initial purposes that
grow, shrink, divide, or combine as the
goals are examined. Therefore, involving
higher levels of management is often cru-
cial in the give and take of the purpose
and goal identification.

Further tradeoffs must be made in
prioritizing goals. The relative importance
of potential reuse benefits will dictate the
degree to which they will be considered in
selecting the reuse strategy. That is not to
say, however, that one benefit will com-
pletely exclude any of the other benefits;
the identification of purpose and goals is
based upon a relative prioritization of
these factors.

Potential short-term and long-term
benefits must also be addressed when
identifying goals and purpose. For exam-

ple, flexibility, extensibility, and sustain-
ability typically correlate with increased
long-term benefits, higher short-term
cost, and longer schedule. To lower short-
term cost and shorten schedules, these
factors might be given lower priority.

The identification of purpose and
goals entails the five steps detailed below.

Identify Purpose
As indicated above, the reuse purpose is
the business problem to be addressed.
The purpose is the project description
over which the reuse effort will be applied
and describes the scope and domain of
the effort. For example, the need to intro-
duce a new product line is a reuse pur-
pose. Another purpose might entail creat-
ing a family of controllers – the family
representing a single project over which
reuse analysis will be performed. Yet
another purpose could include functional
modifications necessary to enhance an
existing product line.

Note that these purposes do not and
must not relate to the reuse strategy. An
example of a poorly defined purpose
would be “to create a common reuseable
library.” This purpose presupposes the
results of the analysis: a reuseable library.
The correct strategy has already been
decided before the analysis has been per-
formed. You must clearly define your
purpose to allow bounding of the prob-
lem to be addressed.

Identify and Quantify Goals
Next, you must determine the relative
importance of potential reuse benefits,
especially in terms of long-term versus
short-term benefits.

To identify goals, you must catalog (list
and describe) the expected potential reuse
benefits. A variety of competing reuse
benefits typically present themselves. For

example, all organizations want to reduce
cost, shorten schedules, and lower risk.
Moreover, flexibility, extensibility, and
sustainability are typically considered a
necessary part of every good design.
Other less-tangible goals are also impor-
tant. For example, customer satisfaction
and market share often outweigh other
cost and schedule considerations.

Next, you must quantify the identified
goals. How do you quantify? To drive the
return-on-investment analysis, the recom-
mended strategy is to quantify goals in
terms of cost and schedule. Cost savings
are quantified by investment dollars over
a specified timeframe. Schedule, of
course, is quantified in calendar time –
often with respect to specific milestones.
Although a variety of measures can be
applied to flexibility, extensibility, and
sustainability, ultimately a cost and sched-
ule impact can be identified. What is the
resulting impact of alternative levels of
flexibility, extensibility, and sustainability?
Risks can also be addressed with cost.
How much are you willing to pay to miti-
gate specific risks?

Q

Stakeholder
Internal/
External

Airframers External

First-Tier Sources

(engine manufacturers, etc.)1
External

FAA/DERs External

Senior Management Internal

Project Management Internal

Systems Engineers Internal

Development Engineers Internal

Test Engineers Internal

Quality Engineers Internal

Configuration Managers Internal

Table 1: Stakeholders

Figure 2: Standard Reuse Analysis and Incorporation Process

Identify Purpose and Goals

Catalog and Analyze Existing or Proposed Artifacts

Compare and Contrast Alternative Approaches

Select Optimal Approach

Plan, Plan, Plan

Strategy Modification

Risk Mitigation

C

Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering January 2005

Although less tangible goals such as
customer satisfaction and market share
can also be quantified in terms of cost,
much more guessing as opposed to esti-
mating is typically involved. You may or
may not want to apply costs to these fac-
tors; often, the tangible goal costs are
simply compared with the understood
need for these elements.

While other measures can also be
effective, performing the additional analy-
sis and estimation to assign costs facili-
tates the prioritization and ultimately the
selection of competing strategies based
on return on investment.

Prioritize Goals
After quantifying the goals, a relative pri-
ority must be given to each. Goals that
have been quantified in terms of cost
lend themselves well to prioritization.
Intangible goals not assigned costs can be
compared with this initial prioritization.
For example, the lowest-cost, barely sus-
tainable system may eventually lead to a
poor marketplace reputation that must be
avoided at all costs. Comparing the cost
of creating the eminently sustainable sys-
tem may not be worth the investment
when compared to the few defects that
will ultimately be addressed – except in
the customer’s eyes. A simple fix taking an
unseemly amount of time can destroy con-
fidence in the software and the credibility
of the manufacturer.

Update Purpose and Goals
Now that the goals have been quantified
and prioritized, the purpose should be re-
addressed. Often, the initial goals and
purpose identified should change as the
tradeoffs become apparent. In fact, as the
analysis continues, the goals and purpose
are often adjusted again and again.
Furthermore, even though the goals and
purpose are assigned a baseline when the
optimal approach is selected, they may
change with any strategy changes or
changes in business conditions.

Document Results
The final step in the goal and purpose
identification is to document the analysis
results:
• Purpose: Describe the included and

excluded scope for the reuse effort.
• Goal Priority: Describe the priority

sequence.
• Goal Quantification: Describe the

quantification and associated ration-
ale.

• Long-Term and Short-Term
Rationale: Discuss the long-term
versus short-term tradeoffs.

• Assumptions: Describe the assump-
tions upon which the analysis was per-
formed, including business climate,
staffing considerations, and so forth.
The relative quantifications and ratio-

nales are particularly important, so do not
omit them. Often, as strategies are devel-
oped, goal prioritizations may change
based on the relative ease or difficulty in
implementing alternative strategies. For
example, if enhanced extensibility will
result in minimal cost impact but is prior-
itized low, revisiting the goals and priori-
tization may be warranted.

This documentation should be made
available to all involved in developing the
reuse strategy. To avoid the reuse effort
taking on a life of its own (as often hap-
pens), the data should be made available
throughout the reuse strategy implemen-
tation.

As indicated above, the goals and pur-
poses may change. The update of the
documentation describing the goals and
priorities is crucial and is often neglected.

Catalog and Analyze Existing or
Proposed Artifacts
After the purpose and goals are identi-
fied, existing or proposed artifacts must
be cataloged and analyzed, and the results
documented. Note that artifacts to be cat-
aloged and analyzed may already exist or
may simply be proposed. Existing arti-
facts are products of previous develop-
ment. Sometimes, no applicable previous
development is pertinent.

Cataloging Artifacts
Cataloging artifacts allows the identifica-
tion of the areas of potential reuse and
the relationships among them. Any data
associated with previous or ongoing
development are fair game for reuse. This
data may include the following:
• Planning data, including the Plan for

Software Aspects of Certification
(PSAC), software development plan,
software configuration management
plan, software quality assurance plan,
software verification plan, and tool
qualification plan.

• Requirements data, including systems
and high-level software requirements.

• Design data, including the software
architecture and low-level software
requirements.

• Verification data, including test cases
and procedures, analysis, review
records, tool qualification data, and
problem reports.

• Configuration data, including soft-
ware configuration index, the soft-
ware life-cycle configuration index,

and the software accomplishment
summary.
The software configuration indexes

and the software life-cycle environment
configuration indexes for the potential
reuse sources are excellent places to start
gathering information. These documents
serve as a central clearinghouse of informa-
tion and describe directly and indirectly
most of the configurable data associated
with the potential source. Be aware, how-
ever, that not all reusable data are includ-
ed in the configuration indexes:
Configuration management and quality
assurance records may not be identified
in these indexes and may still be targeted
for reuse.

The cataloging effort entails docu-
menting the possible reusable artifacts and
the relationships between them.
Depending upon the complexity, a spread-
sheet or a small database may be appro-
priate. You should include the following:
• Artifact Identification: Identify the

artifacts at a useful level of abstrac-
tion. Describing each individual code
file in a configuration may not be use-
ful; groupings of files may be more
appropriate (for example, low-level
discrete input/output [I/O]).
Although the level of abstraction
should be related to the potential
reuseability, ultimately the individual
configurable items must be identifi-
able.

• Artifact Version: Identify the appro-
priate version of each artifact. When
artifacts are grouped, a version identi-
fier appropriate to the grouping
should be used; for example, low-level
discrete I/O associated with Release
2.2. Note that different versions of
the same artifact may be applicable to
the reuse analysis. This is because,
over time, different versions with dif-
ferent desirable functionality may
have been produced.

• Related/Traced Artifacts: The
related/traced artifacts are central to
certification reuse. In certifiable con-
figurations, most artifacts are specifi-
cally related/traced by version. The
ability to reuse artifacts both horizon-
tally and vertically increases reuse
benefit. Relations are described by
traceability documentation, associa-
tion in configuration documentation
(configuration indexes), and/or
applicability.

• Configuration Location: The physi-
cal location of the configured ele-
ments must be documented. If a con-
figuration management system such
as Clearcase or SourceSafe is used, the

DO-178B Certified Software:A Formal Reuse Analysis Approach

January 2005 www.stsc.hill.af.mil 23

location within the hierarchical con-
figuration structure should be identi-
fied. This is particularly important
when artifact groupings are used;
often the path within the configura-
tion management system is used to
identify the grouped artifacts.

Artifact Analysis
Now that the artifacts have been cata-
loged, they must be analyzed in terms of
the following:
• Functional Alignment.
• Requirements Volatility.
• Previous Development Rigor.
• Maturity of Existing Artifacts.
• Targeted Platform Changes.
• Criticality Distribution.

This analysis is discussed in depth in
the companion article [1]. The results of
the analysis will extend the information
gathered in the cataloging stage. For each
artifact (or artifact grouping), the impact
of these characteristics must be
described.

The specific measure used in describ-
ing the characteristic levels (including per-
centage, high/medium/low, relevant/not
relevant, and so forth) will depend upon
the needs for gradation. These measures
must be selected before the analysis
begins and must be consistently applied.
For example, for the I/O low-level dri-
vers, the functional alignment might be
100 percent, the requirements volatility
low, the previous development rigor high
(as would be expected in a previously cer-
tified product), the maturity of the exist-
ing artifacts high, no targeted platform
change effects, and no partitioning for
criticality distribution appropriate.

Compare and Contrast Alternative
Approaches
After the artifacts are analyzed, the target
software architecture must be addressed.
The goal of the architecture analysis is to
develop and document a number of
what-if architectural candidates. To
achieve this goal, the existing software
architecture must be analyzed to deter-
mine how easy or difficult the incorpora-
tion into a new application will be. Two
formal software evaluation processes are
considered below.

Software Architecture Analysis Method
The Software Architecture Analysis
Method (SAAM) [2] is simple, easy to
learn, and does not require a great deal of
training. The stakeholders generate a
number of scenarios that describe possi-
ble future system modifications that can
address the purpose and goals identified.

Scenarios are short statements describing
the interaction of one of the stakeholders
with the system. Partitioning maintenance
monitoring from flight-critical function-
ality is an example of a SAAM change.
The associated SAAM scenario evalua-
tion is illustrated in Table 2.

A number of inputs and outputs are
required to perform the SAAM. One or
more documented architectures are used
and modified to describe potential sce-
narios. These documented scenarios pro-
vide a context within which the accom-
modation of the purpose and goals are
evaluated. The primary SAAM outputs
are the adjusted scenario architectures
and the estimates of the anticipated costs
and associated schedule. In addition, the
analysis provides a greater understanding
of the system functionality. Finally, the
SAAM-based evaluation provides social
benefits, as stakeholders come together
and gain a common understanding of the
costs and benefits of competing
approaches.

Architecture Tradeoff Analysis Method
The Architecture Tradeoff Analysis

Method (ATAM) [2] reveals both how
well an architecture satisfies particular
quality goals and also provides insight
into how those quality goals interact with
each other.

In contrast to the SAAM method,
which focuses primarily on modifiability,
the ATAM method provides greater
insight into the quality goals: the ilities
(flexibility, extensibility, sustainability, and
so forth). The quality attribute utility tree
allows a prioritization of quality attribut-
es realized as scenarios. This tree focuses
the analysis on the scenarios that address
the quality attributes and ensures that the
scenarios that are important to the stake-
holders are addressed.

A quality attribute utility tree is illus-
trated in Figure 3. Typically, however, the
quality attribute tree is documented with
a matrix rather than with the tree format
shown.

Also vital to the ATAM method are
the types of scenarios addressed in the
following:
• Use-case scenarios that address typical

current stakeholder usage scenarios.
• Growth scenarios that address antici-

2

Components

Establish lower-
criticality partition for
maintenance
monitoring
functionality.

Indirect. Additional system
safety assessment
effort. Updates to
architecture to
enforce partitioning.
Updates to PSAC.
Restructuring test
documentation.

Plans, requirements,
design description,
implementation (15
modules) test cases
and procedures (25
test cases, 57
procedures) updated.
Formal final testing
included with overall
release.

4 person months.

Figure 1 SAAM Scenario Evaluation

Changed/Added
Number ofDescription Direct/Indirect Required Changes Effort for Changes

(estimate)

Table 2: SAAM Scenario Evaluation

Figure 2 Quality Attribute Utility Tree

Quality Attributes Utility Tree

Flexibility Sustainability Extensibility Usability ...

Changes in

anticipated

volatile areas

will not impact

architecture.

Changes in

anticipated

volatile areas

readily

verifiable.

...

Functional end-to-end

(thread) testing not to

be dependent upon

volatile functionality

(although may exercise

the functionality).

...

... ...

Ratings

Importance 30

Difficulty 15

Cost 50

Risk 10

Quality

Attributes

Attribute

Refinement

Attribute

Scenario

Ratings

Figure 3: Quality Attributes Utility Tree

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering January 2005

pated changes to the system.
• Exploratory scenarios that address

extreme changes expected to stress
the system.
Addressing these scenarios allows

changes to the system to be considered up
to and beyond the current boundary con-
ditions of the current design.

Selecting the Appropriate Architectural
Method
So which approach should you choose?
Clearly, SAAM is a smaller, simpler, less
expensive approach, whereas, ATAM is
larger, more complex, and more expen-
sive. Three factors should drive the selec-
tion: the complexity of the existing
architecture, the potential complexity of
the resulting architecture, and the
approximate size of the effort. If the
architectures are complex and the size of
the anticipated effort is large, then the
cost of ATAM is well worth the addi-
tional reduction in risk. On the other
hand, if the architectures are not espe-
cially complex and the effort is small
(compared to a two-week effort with a
dozen people), the reduction in risk may
not warrant the cost.

Select Optimal Approach
At this point, the selection of the optimal
reuse approach should be made, selecting
from the number of what-if architectural
candidates that have been created based
on the analysis method used from the ear-
lier section, “Compare and Contrast
Alternative Approaches.” Keep in mind
that the entire point of reuse is to increase
the return on investment (ROI) while
ensuring continued business viability. You
should now have documented alternative
architectural approaches that can be
assessed in terms of the purpose defined
and the prioritized goals. As with the ini-
tial identification of goals and purpose, all
stakeholders should participate in the
approach selection process. Moreover, the
goal of approach selection is agreement
and buy-in – all the more reason to ensure
that all stakeholders are involved.

The selection of the optimal approach
and the associated ROI analysis considers
the following:
• Determining cost incurred over time

is perhaps the most difficult part of
the ROI analysis, especially accurately
determining the long-term versus
short-term benefits – and then making
the appropriate tradeoffs. As a rule of
thumb, the more work performed up
front in emphasizing maintenance,
extensibility, and flexibility, the less
follow-on work will be required. The

best way to model this comparison is
to plot anticipated expenditures over
time and compare those expenditures
to the company’s financial capabilities
and the overall business schedule con-
siderations.

• Schedule considerations are typically
driven by either the schedule imposed
by customers, or by market conditions
and the need to field products before
your competitors. Although schedules
imposed by customers tend to be
immutable, more schedule flexibility is
typically available with marketing
strategy tradeoffs. In both cases, the
earlier the reuse strategy is considered
and implemented, the more schedule
flexibility will be available in both
cases. Clearly, development of a new
reuse library with elements designed

for reuse is inappropriate for a slight
change to an existing certified config-
uration on a tight schedule. On the
other hand, if the change is slight but
the schedule is not critical and there
are other uses for a reusable library
(for example, future families of similar
products that would benefit from the
effort), the migration of a known
application may be the ideal means to
introduce the reuse.

• If the reuse strategy implementation
is to be funded internally by company
investment, the work can be per-
formed to align to projected needs.
Otherwise, the work must be per-
formed within the schedule permitted
by the customer. Note that the risk
both increases and decreases with
investment-funded reuse implementa-
tion. Clearly, schedule risk decreases;
however, the risk of losing funding

partway through the reuse implemen-
tation and resorting to fast-and-dirty
development increases.

• The costs associated with reuse must
be carefully estimated and document-
ed – especially with design for reuse.
Too often, manufacturers either
underestimate or shift funding away
from design-for-reuse activities. As a
result, many of these efforts fail. The
software that was intended for reuse
turns out to be only applicable for a
single use, but that software was more
expensive because of the aborted
reusability work. In fact, scavenge
reuse is often the product of aborted
design-for-reuse efforts. Unfortunate-
ly, when the reuse library does not
materialize and the costs associated
with each scavenge reuse instance
exceeds the initial estimates based on
design for reuse, reuse is given a bad
name.

• Effects on intangible factors must be
considered. Is the best always the low-
est cost? Intangible benefits often
cause more expensive approaches to
be selected over less expensive
approaches. Company limitations on
available funding often stand in the
way of the most efficient approaches
as well. Therefore, the short-versus-
long-term analysis is crucial to the
approach selection. You must also
consider the lifespan and anticipated
breadth of applicability of the reuse
elements. The lifespan of an applica-
tion concerns the longevity, with
changes, for a particular configura-
tion. The breadth of applicability
concerns the number of different
applications that will make up the
reuse target family.

• Plausibility and associated risk are a
concern. Selecting the optimal
approach is to judge the various
approaches in terms of the identified
purpose and the prioritized goals.
When it is not possible to select
among the candidate scenarios and
still attain the purpose and goals, the
goals and purpose must be adjusted or
new scenarios generated. Risk also
must be considered when selecting
among competing architectures and
may require the adjustment of the
goals and purpose. An informed deci-
sion must be made on how much risk
the organization is willing to carry.
You must ensure that reasonable
expectations are set.

Plan, Plan, Plan
Reuse planning is key to the success of

“Determining cost
incurred over time is
perhaps the most

diff icult part of the ROI
analysis, especially

accurately determining
the long-term versus
short-term benefits –
and then making the

appropriate tradeoffs.”

DO-178B Certified Software:A Formal Reuse Analysis Approach

January 2005 www.stsc.hill.af.mil 25

reuse. Effective reuse planning always
includes hardware considerations; there-
fore, a considerable amount of planning
and analysis will occur outside the realm of
traditional software plans.

Two types of reuse planning are nec-
essary: certification planning and project
planning. Certification planning encom-
passes creating the planning data required
by the certification authorities (typically to
meet RTCA DO-178B data guidelines).
The project planning concerns the inter-
nal schedules, budgets, and staffing con-
siderations.

The key certification-planning docu-
ment for reducing reuse risk is the PSAC.
The strategy by which reuse is to occur,
including especially partitioning consider-
ations, should be provided to the FAA in
the PSAC as early as possible to prevent
costly project missteps. Another critical
document for reducing reuse risk is the
configuration management plan. The
configuration of reusable components
and the tracking of changes among dif-
ferent reuse instantiations are often
neglected and can impact both cost and
schedule (as well as embarrassment).

An additional certification-planning
consideration concerns the FAA/DER
used. When incorporating reuse, try to
use the same DER for all reuse instantia-
tions to allow him/her to become com-
fortable with the reuse data and process.

Because much of the analysis data
will flow directly into the detailed project
planning, the data must be realistic.
Tracking against unrealistic expectations
ensures failure. Many successful reuse
efforts can be viewed as failures because
the documented expectations were unre-
alistically high. Other reuse efforts fail
because they are abandoned when early
tracking data deviates from unrealistic
plans.

Strategy Modification
As indicated above, reuse strategies can be
changed mid-stream. Changes can occur
based on changes in business conditions
(especially funding), progress not match-
ing plan, and so forth. When strategies
change, the documented reuse analysis
data is key in determining the next best or
appropriate alternative path. All stake-
holders should be involved in the decision
to change strategies to first determine if
strategy should change and then, if neces-
sary, to determine how the strategy
should change. The same consideration
applied to initial strategy selection should
be applied to strategy changes.

When strategies are modified, the
revised purpose and goal expectations

must be documented and communicated.
Reuse must be tracked against the appro-
priate plan; otherwise, even though reuse
provided meaningful savings (albeit less
than initially expected), the reuse process
will lose credibility.

Risk Mitigation
Reuse risk mitigation includes reigning in
the scope of the reuse activity, overcom-
ing the not-invented-here mindset, and avoid-
ing (where practicable) bleeding-edge tech-
nology. Furthermore, a clear purpose and
goals, a solid analysis, careful planning,
and stakeholder buy-in mitigate the risk of
reuse.

These pitfalls represent the common
major challenges that you will face when
implementing reuse. A myriad of other
programmatic and technical risks specific
to the particulars of the product and
companies will plague the reuse effort.
These risks include both normal develop-
ment risks plus risks associated with the
reusable aspect of the development.

The target of the risk process may be
different, spanning many products
instead of a single product. Schedules
and milestones must be coordinated: Risk
of delay in one product instantiation
affecting the schedule and milestones of
another product instantiation must be
addressed. Moreover, you must address
the misalignment risks associated with
planning and executing the reuse-specific
tasks that could include separate plans,
requirement documents, design docu-
ments, and so forth.

Conclusion
Cost and schedule time can be saved and
safety can be enhanced with reuse for
DO-178B certifiable software. To attain
maximum reuse benefits, however, you
must be rigorous in your approach to the
planning, analyzing, execution, and track-
ing of reuse. This article outlines a rigor-
ous reuse process that provides a road
map to reuse success. Keys to reuse suc-
cess include the following:
• Involving the appropriate stakehold-

ers throughout the reuse analysis and
incorporation process.

• Identifying clearly the reuse goals and
purpose.

• Performing a rigorous architectural
analysis.

• Planning and tracking in detail reuse
execution.

• Reviewing and documenting any nec-
essary mid-stream strategy changes.

• Applying risk mitigation to the
reusable aspects of development.
Addressing these key issues will allow

you to take control of the success or fail-
ure of your reuse effort and, ultimately, to
control your company’s bottom line and
continued competitiveness.u

References
1. Lougee, Hoyt. “Reuse and DO-178B

Certified Software: Beginning With
the Basics.” CrossTalk Dec. 2004
<www.stsc.hill.af.mil/crosstalk>.

2. Clements, Paul, Rick Kaman, and
Mark Klein. Evaluating Software
Architectures. 1st ed. Addison-Wesley,
15 Jan. 2002.

Notes
1. In this example of stakeholder break-

down, major aircraft sub-system sup-
pliers (for example, engine manufac-
turers) are the first-tier suppliers to
the airframers. The software organiza-
tion discussed would be part of a sec-
ond-tier supplier, supplying compo-
nents directly to the first-tier suppli-
ers. Often, software supply sources
populate even lower tiers in the supply
chain.

2. Direct scenarios are currently satisfied
by the system architecture; indirect
scenarios require a modification of
the architecture.

About the Author

Hoyt Lougee is the
engineering manager,
Aerospace Division, at
Foliage Software Sys-
tems. Foliage delivers
DO-178B process and

technology consulting, custom software
development, and independent verifica-
tion and validation. Lougee’s responsibil-
ities include program management and
software process improvement. Pre-
viously with AlliedSignal/Honeywell,
Lougee has more than 13 years of expe-
rience with both military (DOD-STD-
2167A) and commercial (RTCA DO-
178B) aviation software development
and certification efforts. Lougee has
authored a number of white papers and
presented at the 2002 Digital Avionics
Systems Conference.

Foliage Software Systems
168 Middlesex TPKE
Burlington, MA 01803
Phone: (781) 993-5500
Fax: (781) 993-5501
E-mail: hlougee@foliage.com

Open Forum

Free/Libre/Open Source Software
(FLOSS) has become a competitive

alternative to commercial software in
almost all areas of computing. It has
become more and more common to
find FLOSS software in schools, hospi-
tals, governments, businesses, and
homes. The Linux operating system,
the Firefox Web browser, and the
Apache Web server are just some exam-
ples of FLOSS software that is being
used on an increasing basis. There are
many obvious advantages to FLOSS:
the freedom to tinker with the code, the
ability to observe exactly what the soft-
ware is doing, and the lack of depen-
dence on a commercial provider. As
well, FLOSS has a strong international
community of programmers who vol-
unteer countless hours to produce this
software.

With so many obvious advantages,
the problems with FLOSS are often
overlooked. Though the FLOSS move-
ment claims to be open to everyone,
many users and developers alike feel
that the community is not as welcoming
as it claims to be. This exclusion creates
a gap between users and FLOSS devel-
opers, and this gap fosters software
usability problems.

It is becoming increasingly common
for corporations to participate in
FLOSS projects; however, in this article
we are focusing on issues that arise
from projects produced primarily by
self-governed volunteers. This is both
because corporate software develop-
ment is already well researched, and
because it is the strong volunteer com-
munity that makes FLOSS so unique.

Open Community
One of FLOSS’ greatest strengths is its
openness: Anyone is free to contribute.

However, more than just the capacity
for contribution is necessary to create
an open community. FLOSS communi-
ties are built upon geek and hacker cul-
tures, and these cultures are not known
for their friendliness towards new users
or those with different opinions. This
stubbornness often causes new users or
non-hackers to feel unwelcome by the
community. Though this exclusion is a
social issue, the nature of FLOSS caus-
es it to affect more than just social rela-
tionships. It also impacts the code.

Because FLOSS programmers tend
to contribute code during their spare
time, it is natural that they would make
contributions that interest them.
However, not all software design tasks
are viewed as being equal. For example,
there is much less geek prestige to be
earned for interface design, user testing,
or documentation. Therefore these
tasks are often neglected by the volun-
teer coders who can receive more geek
cred 1 by focusing on other elements of
software design. An open source usabil-
ity study states:

Indeed, there may be a certain
pride in the creation of a sophis-
ticated product with a powerful,
but challenging to learn inter-
face. Mastery of such a product
is difficult and so legitimates
membership of an elite who can
then distinguish itself from so-
called lusers. [1]

In contrast, software companies hire
employees to specifically perform tasks
like user testing, documentation, and
interface design. Usability experts,
graphic artists, tech writers, and others
all have a place in commercial software
development. So where are these par-

ticipants in FLOSS development? The
hard geek culture behind FLOSS may
be useful in creating powerful software,
but it also drives away these other
essential members of the software team
[1].

When users criticize FLOSS’ usabil-
ity, their suggestions are often ignored
or flamed, rather than analyzed and
used to improve the software: “Geeks
tend to treat others who disagree with
loud, obvious disdain. These behaviors
are harmful both to the disagreer and to
the community as a whole” [2]. Many
users are told that they have no right to
complain about FLOSS software unless
they are willing to fix it themselves [3].
This attitude chases off many users
who might otherwise have become firm
FLOSS supporters. In turn, it reduces
the number of users who are available
to report bugs, participate in user test-
ing, and help out with basic documen-
tation. Thus the gap between user and
developer widens.

The distributed nature of FLOSS
also means that not all developers have
the same goals in mind. Some develop-
ers participate in order to create superi-
or software. Others simply want to tin-
ker with some code. Increasing the soft-
ware’s accessibility is not a priority for
the second group. They are creating
software for their own use, or simply
coding for coding’s sake, rather than
creating software for a general audi-
ence. As one programmer on Slashdot
<www.slashdot.org> said:

You’d better believe I’m design-
ing it for ME. It’s not fun to
design programs for other peo-
ple. That’s a job. I wouldn’t do
that for free. If you would like to
PAY me to make it work for you,

Opening Up Open Source

As Free/Libre/Open Source Software (FLOSS) becomes an increasingly popular alternative to commercial software, its user
base has extended from software developers to the general public. However, many FLOSS projects still suffer from usability
issues such as nonintuitive interfaces and poor documentation. Many of these problems stem from the technical elite’s general
impatience towards new users. This negative attitude causes less effort to be spent on making it easier for new users to use the
software. Thus, many of the non-technical aspects of the development cycle such as documentation and interface design are
neglected. This neglect is further emphasized by the fact that many developers would rather work on the code than documen-
tation and interface design. These social and usability issues must be resolved for FLOSS to become a much more viable alter-
native for both technical and non-technical users alike.

Michelle Levesque and Jason Montojo
University of Toronto

26 CROSSTALK The Journal of Defense Software Engineering January 2005

January 2005 www.stsc.hill.af.mil 27

I would be happy to. [4]

This attitude draws effort away from
software usability and often causes
users to believe that FLOSS is intended
for hackers alone.

Usability
The engineer’s fallacy is the belief that
if something is easy for the designer, it
will be easy for the average user, too.
Usability does not occur naturally in
software, it is something that must be
consciously planned. But most software
written outside the industry tends to be
written by programmers for their own
use, so they tend to focus on the tech-
nical aspect of their program such as
the language it is written in or the algo-
rithms being used. Some of them try to
show off their mastery of the technol-
ogy to other hackers, oftentimes at the
expense of usability [1]. Although they
“can be very good at designing inter-
faces for other hackers, they tend to be
poor at modeling the thought processes
of the other 95 percent of the popula-
tion” [5].

When interfaces fail at being intu-
itive, users have two main options for
getting help: developer-provided docu-
mentation, and community-provided
documentation such as forums and
mailing lists. The problem with devel-
oper-provided documentation is that it
is sometimes non-existent, especially in
FLOSS projects. When it is there, it is
typically written with the assumption
that the reader already has some techni-
cal background about the software and
what it does. Information on forums
and mailing lists is often just as techni-
cal as developer-provided documenta-
tion since the main code contributors
are usually the ones fielding the ques-
tions.

FLOSS’ community-provided docu-
mentation also assumes a certain level
of technical skill. Unlike commercial
software, which usually provides a hot-
line to satisfy this need, FLOSS projects
typically use online communication
channels like e-mail, newsgroups, chat
rooms, online forums, and mailing lists
[6]. Although these are invaluable
resources, they are not easily accessible
to the average user [7] who may not
know how to use them or even that
they exist.

Providing adequate documentation
and easily accessible assistance is not an
easy task, and many FLOSS developers
would rather focus on their work than
deal with these issues: “We all know

that some projects, probably most,
need better documentation and could
use some more refactoring. But until
you open up your wallet, get off our
backs” [8]. In an environment where
only hackers feel comfortable, yet do
not want to do certain tasks, these tasks
quickly become neglected.

To make matters worse, the distrib-
uted nature of FLOSS means that the
different contributors may have differ-
ent ideas about where they want their
project to go. Such conflicts end up
producing “15 different editors, several
different Web browsers, several differ-
ent desktops, and so on” often leaving
the end-user with more choice, and just
as much confusion [3]. For every choice
that the user must make, the FLOSS

learning curve becomes that much
more difficult. Though there are many
advantages to the variety of forks avail-
able in FLOSS, it just adds another layer
of complexity for the users.

Conclusion
None of the problems that we describe
above are that impossible to resolve.

The existence of a problem does
not necessarily mean that all OSS
[open source software] interfaces
are bad or that OSS is doomed
to have hard-to-use interfaces,
just a recognition that the inter-
faces ought to be and can be
made better. [1]

Usability is an issue that has not been
solved in proprietary software either.
However, the FLOSS community has to
actively acknowledge that this problem
exists before an effective resolution can
be implemented.

There are already some initiatives in
place to try to solve some of these

problems. An example is GrokDoc
<www.grokdoc.net>, a usability study
that strives to create documentation for
GNU/Linux. Unlike most documenta-
tion, which is created by having devel-
opers explain how to perform various
tasks, GrokDoc is based on having new
users demonstrate exactly what they
find difficult.

Efforts are also being developed to
deal with the unwelcoming environ-
ment that many users and developers
feel exists in FLOSS communities. The
most pronounced of these efforts are
the support mechanisms being built to
try to encourage women to participate
in FLOSS activities. FLOSSpols
<www.flosspols.org> is a study cur-
rently in progress to try to understand
the wide gender gap in FLOSS and to
offer concrete recommendations on
how to solve this gap. Other efforts
include WOWEM, a gender equity and
FLOSS research and education project,
and LinuxChix, a community for sup-
porting women in Linux. Despite these
efforts, there is still a strong belief that
most geek-saturated communities like
Slashdot are often unwelcoming and
hostile environments.

It is important to remember that
volunteers do most FLOSS program-
ming. It would be unreasonable to ask
these volunteers to contribute in ways
that they find boring, tedious, or work-
like. However this does not mean that
there will always be tasks that are
neglected in FLOSS development.

We believe that if the FLOSS com-
munity makes the social adjustments
necessary to create a more open setting,
then non-hackers will become more
inclined to participate. This includes
graphic designers, teachers, writers,
more developers, and just normal users.
It is the inclusion of all of these groups
in the development process that will
make FLOSS stronger, more usable,
and truly open to all.u

References
1. Nichols, David, and Michael

Twidale. “The Usability of Open
Source Software.” First Monday 8.1
(2003) <www.firstmonday.dk/issues/
issue8_1/nichols>.

2. Lester, Andy. “Geek Culture Con-
sidered Harmful to Perl.” Lighten-
ing Talks at Yet Another Perl Con-
ference, St. Louis, MO, 20 June 2002
< w w w. p e t d a n c e . c o m / p e r l /
geek-culture>.

3. Gunton, Neil. “Open Source
Myths.” 25 July 2004 <www.neil

“Though the FLOSS
movement claims to be

open to everyone,
many users and

developers alike feel
that the community is
not as welcoming as it

claims to be.”

Opening Up Open Source

28 CROSSTALK The Journal of Defense Software Engineering January 2005

gunton.com/open_source_myths>.
4. Slashdot. “Five Fundamental Prob-

lems With Open Source.” Comment
By Bill Shooter of Bul. 13 Apr. 2004
< h t t p : / / a s k . s l a s h d o t . o r g / a s k
slashdot/04/04/12/1757244.shtml>.

5. Dibona, C., et al. Open Sources:
Voices From the Open Source Rev-
olution. 1st ed. O’Reilly, Jan. 1999
<www.oreilly.com/catalog/open
sources/book/raymond2.html>.

6. Cubranic, Davor. “Open-Source
Software Development.” University
of British Columbia, Nov. 1999
<http://sern.ucalgary.ca/~maurer/
ICSE99WS/Submissions/Cubranic
/Cubranic.html>.

7. Trudelle, Peter. “Bugzilla Bug 89907
- Need to make it easier for users to
make us their default browser.”
Mozilla, 2 Jan. 2002 <http://bug
zilla.mozilla.org/show_bug.cgi?id=
89907#c14>.

8. Countryman, Dan. “Sometimes
great things have too [sic] be
absorbed and thrown way [sic].”
Object Country, 25 Apr. 2004
<http://jroller.com/page/object
country/20040425>.

Note
1. Credibility among young fashion-

able urban individuals.

Open Forum

About the Authors

Michelle Levesque is
currently involved with
the Citizen Lab where
she designs and imple-
ments programs to enu-
merate and circumvent

state-imposed Internet content filtering.
She is working towards a degree in soft-
ware engineering at the University of
Toronto.

E-mail: ml@cs.toronto.edu

Jason Montojo is cur-
rently developing bioin-
formatics Web applica-
tion software for the
Blueprint Initiative in
Toronto, Canada. He also

has worked on the Eclipse Open Source
project as a member of the platform
development team at Object Technology
International. Montojo is working
towards a degree in software engineering
at the University of Toronto.

E-mail: j.montojo@utoronto.ca

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
AUG2003 c NETWORK-CENTRIC ARCHT.
SEPT2003 c DEFECT MANAGEMENT

OCT2003 c INFORMATION SHARING

NOV2003 c DEV. OF REAL-TIME SW
DEC2003 c MANAGEMENT BASICS

MAR2004 c SW PROCESS IMPROVEMENT

APR2004 c ACQUISITION

MAY2004 c TECH.: PROTECTING AMER.
JUN2004 c ASSESSMENT AND CERT.
JULY2004 c TOP 5 PROJECTS

AUG2004 c SYSTEMS APPROACH

SEPT2004 c SOFTWARE EDGE

OCT2004 c PROJECT MANAGEMENT

NOV2004 c SOFTWARE TOOLBOX

DEC2004 c REUSE

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <stsc.customerservice@
hill.af.mil>.

Departments

January 2005 www.stsc.hill.af.mil 29

Dear CrossTalk Editor,

It will become increasingly clear to policy-makers over
the next several years that the open source paradigm
must be embraced by the Department of Defense
(DoD). Despite the compelling arguments for open
source and broad commercial industry acceptance, there
will be significant government structural and defense
industry interest impeding the inevitable. These impedi-
ments will likely only fall when one or more major
defense acquisition programs (MDAPs) fail due to soft-
ware cost overruns and schedule delays, affecting the
bottom line of major defense contractors. However,
determined policy efforts could accelerate the adoption
of open source, saving the DoD billions of dollars,
reducing delays, and facilitating joint operations through
interoperability.

The size of the effective source lines of code (SLOC)
for MDAPs has reached well over 10 million SLOC and
is growing rapidly. The development cost of this soft-
ware, which the Office of the Secretary of Defense
(OSD) Cost Analysis Improvement Group (CAIG) puts
at more than $300/SLOC, is only decreasing slowly as
increasing complexity competes with process and tool
improvements. As a result, software development is
quickly approaching 50 percent of the cost of MDAP
development, and the eight years or more of develop-
ment schedule has placed software permanently on the
critical path to deployment. Software has become the
cost- and schedule-limiting factor of our future defense
capabilities.

Many of the requirements driving software have and
are being addressed by many programs, yet data suggests
only a (roughly) 30 percent savings is achieved by reusing
and modifying existing code. Code reused from other
programs must often be substantially modified to adapt
to the architecture and specific requirements of another
program. Architectural differences between programs
impede coarse-grained reuse while differences in the
details of requirements require modification of code at
the fine grain. Reuse is further hampered by the concur-
rent evolution of the programs being reused. Programs
committed to reuse as a cost saving measure can estab-
lish program-to-program memorandums of agreement,
but it is easy to see how this would become an n-factori-
al interface coordination problem when looking across
multiple programs, with significant duplication of effort.

A current alternative approach to open source is for
software reuse to be mandated by policy and the estab-
lishment of joint development efforts such as the
Mission Planning System Framework and Common
Capabilities being developed by the Air Force and Navy.
Unfortunately, not-invented-here concerns have prevented
widespread assumption of this important command-and-
control software initiative. As far as I know, no MDAPs
have actively participated in the requirements definition
of the Common Capabilities or adapted their command
and control architecture to leverage or influence this
development.

The open source development paradigm offers the

promise and presents the challenges of coordinated def-
inition of requirements, architecture and design
approach, coding, and testing. The promise is enhanced
reuse and interoperability, shared development costs, and
shortened development schedules. The challenges,
among others, are security, organizational and contractu-
al performance responsibility, and proprietary and licens-
ing considerations. These challenges should be studied
and can be overcome. Many of them have been and are
being addressed in a variety of ways by the commercial
open source community, which now includes the largest
commercial software vendors, including IBM, Novell,
Sun Microsystems, and even Microsoft.

The development and advocacy of modern and flexi-
ble open architectures and standards by the Defense
Information Systems Agency is a necessary precondition
for guiding the development of potentially hundreds of
open source projects within the DoD so that the soft-
ware for multiple MDAPs can be more easily assembled
from open source code. Once security and other key
issues have been addressed, I recommend the establish-
ment of (including ground rules for) a repository for
DoD open source software development, modeled in
some ways along the lines of the popular <www.source-
forge.net> open source development Web site. Perhaps
the URL might be <www.sourceforge.mil>. The force of
arguments for open source are so compelling that early
adopters in the DoD will find many reasons to utilize
such a repository once it becomes available. Among
other development artifacts, requirements databases, uni-
fied modeling language models, source code, and bug
resolution tracking should be high priorities for such a
repository.

In the meantime, I encourage the DoD software
acquisition community to become more aware of the
open source development. Junior officers and developers
might want to select one of the more than 50,000 pro-
jects at <www.sourceforge.net> to participate in.
Programming skills are not necessarily required. One can
contribute in many ways, including software testing and
documentation. Software acquisition managers could
consider how to leverage existing open source software
in the programs they manage. Policy-makers could
engage industry leaders that have recognized the market-
place advantages of open source to address unique DoD
concerns. I hope that open source advocates will spread
across the software acquisition community and impor-
tant DoD software institutions that include Carnegie
Mellon University’s Software Engineering Institute, the
U.S. Air Force’s Software Technology Support Center,
and the MITRE Corporation.

Finally, I hope that the defense industry will recognize
that the open source paradigm can be tailored and lever-
aged into increased competitiveness, productivity, and
profits, while delivering more capability to our military
faster and cheaper.

Thomas M. Schaefer
Senior Defense Cost Analyst and Software Developer

LETTER TO THE EDITOR

Departments

30 CROSSTALK The Journal of Defense Software Engineering January 2005

So now you are a technical program manager. You climbed
from trainee, senior engineer, team lead, project manager

to program manager. You planned your career and made the
sacrifices.

When staff set up the office pool, you went back to night
school. While colleagues went to the local bar, you were in
class with the statistics tsar.

While teammates looked for the easy chore, you volun-
teered for the quality program de jour. When colleagues were
on the slopes, you kept the project off the ropes.

While your rival hatched political schemes, you were lead-
ing tiger teams. While the boss was on the
links, you discovered how
the customer thinks.

You endured staff
meetings, suffered cubi-
cal seating, and dodged
performance review beat-
ings.

As you don your
coveted title of the
Geek Godfather, you
will realize the job is
poles apart from
your aspiration.
Even the best-pre-
pared engineer can be
blindsided by the real-
ities and limitations of
the job. The stakes are
high and rife with risk. Here
are a few misdemeanors to
avoid.

First, you have little time to run the
program. Even though you are the Big
Kahuna, the daily work is now out of your hands. Your time
and influence will shift from direct to indirect: articulating
and conveying strategy, institutionalizing rigorous processes,
and setting value and tone for projects – not the typical skills
of an engineer.

Ironically, the transition from engineer to program man-
ager leaves a sense of lost control. Initially, you feel more like
Seinfeld’s Kramer – restless, disjointed, and sketchy – than
like his alter ego Peter Von Nostrand: cool, calm, and col-
lected. New program managers tend to gravitate back to the
comfort and familiarity of daily operations at the expense of
mounting strategic, financial, legal, personnel, and stakehold-
er demands.

It is critical that you learn to relinquish responsibility and
manage through delegation and accountability. Like the bri-
dle, the keel, and the fulcrum – it’s about leverage. Without
leverage, you will lose control.

Second, you are always sending signals. The high profile
of a program manager is viewed as a perk of the job. Au con-
traire. The extent of scrutiny and interpretation of your
every move can be vitiating. The stealthy days in the lab,
computer room, or office are gone. Your microphone is

always on and the cameras constantly rolling.
Also gone are speculative discussions with managers,

employees, and the public. One day you explore the intrigue
of open source software and the next day you wake up with
a new Linux server farm. One day you complement the use
of rate monotonic analysis and the next day you are listening
to a briefing on vacation scheduling via rate monotonic
analysis.

Consider carefully your actions, conversations, and mes-
sages. Strive for simplicity, clarity, consistency and master
analogies, metaphors, and allegories to communicate your

message.
Third, beware of shooting

stars. Like the grass on the
other side, it is tempting to

reach for another’s guru. Do
not be blinded by that light.
Shining stars in one environ-

ment fade in others. Ask the
Yankees about Alex

Rodriguez’s playoff per-
formance. Moreover,
stars do not stay with
organizations long.
Supernovas that jump,
like free radicals, to your
program are susceptible
to other enticements.

Ask the Cleveland
Cavaliers where Carlos

Boozer is playing this year.
Bringing in a superstar

resembles an organ transplant. The
new body rejects the prized organ. This

battle consumes resources that take away from
the healthy parts of the body that soon cause other health

problems. Transplanting a star into your organization will no
doubt cause resentment, conflict, and impede team morale.

My advice: grow your stars from within. Internal stars
know the culture, garner employee support, and are more
loyal. If you do star search, assure the luminary can shine in
your program.

Finally, issuing commands can be costly. The conse-
quences of orders expand proportionally to the breadth of
command. Unilateral commands that overrule thoughtful
decisions trigger resentment, insecurity, and perplexity.
Excessive intervention, inquisition, and supersession create
bottlenecks as employees are excessively inclined to consult
you before acting.

As program manager, you will have to make decisions and
give orders. When doing so, be selective, deliberate, and
inclusive with a broader plan of action in mind. If not, your
office will resemble the lines at Seinfeld’s famous Soup
Kitchen – no funding for you! Next!

–Gary Petersen
Shim Enterprise, Inc.

BACKTALK

January 2005 www.stsc.hill.af.mil 31

High Stakes and Misdemeanors

CrossTalk / MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Co-Sponsored by
U.S. Air Force

Air Logistics Centers
MAS Software Divisions

Software Engineering Division
Ogden Air Logistics Center

	Front Cover
	Table of Contents
	Policies, News, and Updates
	Policy Note to Readers

	Open Source Software
	Open Source Software: Opportunities and Challenges
	Open Source Opens Opportunities for Army’s Simulation System
	Introduction to the User Interface Markup Language

	Software Engineering Technology
	DO-178B Certified Software: A Formal Reuse Analysis Approach

	Open Forum
	Opening Up Open Source

	From the Publisher
	Web Sites
	Coming Events
	Call for Articles
	Letter to the Editor
	2005 CrossTalk Editorial Board
	BackTalk
	Back Cover

